Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Analyses of Polluted White Dwarf Stars with Applications to the Geochemistry of Rocky Exoplanets
by
Doyle, Alexandra Elyse
in
Astronomy
/ Geochemistry
/ Planetology
2021
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Analyses of Polluted White Dwarf Stars with Applications to the Geochemistry of Rocky Exoplanets
by
Doyle, Alexandra Elyse
in
Astronomy
/ Geochemistry
/ Planetology
2021
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Analyses of Polluted White Dwarf Stars with Applications to the Geochemistry of Rocky Exoplanets
Dissertation
Analyses of Polluted White Dwarf Stars with Applications to the Geochemistry of Rocky Exoplanets
2021
Request Book From Autostore
and Choose the Collection Method
Overview
In this work, exoplanet-research is combined with the study of the solar system in order to assess differences and similarities between rocky bodies in the Milky Way. To evaluate rocky bodies outside of the solar system, I utilize optical spectroscopy to study polluted white dwarf stars, dense stars that show accretion of planetary material. By observing polluted white dwarfs, we can measure elemental abundances from the rocky and icy bodies that previously orbited the star. Specifically, I conduct observations using the KAST Spectrograph on the Shane 3-meter telescope at Lick Observatory and the High-Resolution Echelle Spectrometer (HIRES) on the Keck I Telescope, as well as evaluate compiled literature data. Generally, the elemental compositions of extrasolar planetesimals closely resemble those of rocky bodies in the solar system. In this work, a more detailed comparison with solar system meteorites and planets shows that oxidation of planetesimals prior to planet formation is common among extrasolar rocks. Overall, the processes that lead to the geochemistry and much of the geophysics of Earth is normal compared to the current sample of extrasolar planetesimals. Additionally, the origin of excesses in spallogenic nuclides in polluted white dwarfs is investigated. The MeV proton fluence required to form the high Be/O ratio in the accreted parent bodies of two polluted white dwarfs (GALEX J2339-0424 and GD 378) is consistent with irradiation of ice in the rings of a giant planet within its radiation belt, followed by accretion of the ices to form a moon that is later accreted by the WD.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9798582527879
This website uses cookies to ensure you get the best experience on our website.