MbrlCatalogueTitleDetail

Do you wish to reserve the book?
MMD Aggregated Two-Sample Test
MMD Aggregated Two-Sample Test
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
MMD Aggregated Two-Sample Test
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MMD Aggregated Two-Sample Test
MMD Aggregated Two-Sample Test

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
MMD Aggregated Two-Sample Test
Paper

MMD Aggregated Two-Sample Test

2023
Request Book From Autostore and Choose the Collection Method
Overview
We propose two novel nonparametric two-sample kernel tests based on the Maximum Mean Discrepancy (MMD). First, for a fixed kernel, we construct an MMD test using either permutations or a wild bootstrap, two popular numerical procedures to determine the test threshold. We prove that this test controls the probability of type I error non-asymptotically. Hence, it can be used reliably even in settings with small sample sizes as it remains well-calibrated, which differs from previous MMD tests which only guarantee correct test level asymptotically. When the difference in densities lies in a Sobolev ball, we prove minimax optimality of our MMD test with a specific kernel depending on the smoothness parameter of the Sobolev ball. In practice, this parameter is unknown and, hence, the optimal MMD test with this particular kernel cannot be used. To overcome this issue, we construct an aggregated test, called MMDAgg, which is adaptive to the smoothness parameter. The test power is maximised over the collection of kernels used, without requiring held-out data for kernel selection (which results in a loss of test power), or arbitrary kernel choices such as the median heuristic. We prove that MMDAgg still controls the level non-asymptotically, and achieves the minimax rate over Sobolev balls, up to an iterated logarithmic term. Our guarantees are not restricted to a specific type of kernel, but hold for any product of one-dimensional translation invariant characteristic kernels. We provide a user-friendly parameter-free implementation of MMDAgg using an adaptive collection of bandwidths. We demonstrate that MMDAgg significantly outperforms alternative state-of-the-art MMD-based two-sample tests on synthetic data satisfying the Sobolev smoothness assumption, and that, on real-world image data, MMDAgg closely matches the power of tests leveraging the use of models such as neural networks.
Publisher
Cornell University Library, arXiv.org