Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
MMD Aggregated Two-Sample Test
by
Schrab, Antonin
, Mélisande Albert
, Guedj, Benjamin
, Kim, Ilmun
, Laurent, Béatrice
, Gretton, Arthur
in
Kernels
/ Minimax technique
/ Permutations
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
MMD Aggregated Two-Sample Test
by
Schrab, Antonin
, Mélisande Albert
, Guedj, Benjamin
, Kim, Ilmun
, Laurent, Béatrice
, Gretton, Arthur
in
Kernels
/ Minimax technique
/ Permutations
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Paper
MMD Aggregated Two-Sample Test
2023
Request Book From Autostore
and Choose the Collection Method
Overview
We propose two novel nonparametric two-sample kernel tests based on the Maximum Mean Discrepancy (MMD). First, for a fixed kernel, we construct an MMD test using either permutations or a wild bootstrap, two popular numerical procedures to determine the test threshold. We prove that this test controls the probability of type I error non-asymptotically. Hence, it can be used reliably even in settings with small sample sizes as it remains well-calibrated, which differs from previous MMD tests which only guarantee correct test level asymptotically. When the difference in densities lies in a Sobolev ball, we prove minimax optimality of our MMD test with a specific kernel depending on the smoothness parameter of the Sobolev ball. In practice, this parameter is unknown and, hence, the optimal MMD test with this particular kernel cannot be used. To overcome this issue, we construct an aggregated test, called MMDAgg, which is adaptive to the smoothness parameter. The test power is maximised over the collection of kernels used, without requiring held-out data for kernel selection (which results in a loss of test power), or arbitrary kernel choices such as the median heuristic. We prove that MMDAgg still controls the level non-asymptotically, and achieves the minimax rate over Sobolev balls, up to an iterated logarithmic term. Our guarantees are not restricted to a specific type of kernel, but hold for any product of one-dimensional translation invariant characteristic kernels. We provide a user-friendly parameter-free implementation of MMDAgg using an adaptive collection of bandwidths. We demonstrate that MMDAgg significantly outperforms alternative state-of-the-art MMD-based two-sample tests on synthetic data satisfying the Sobolev smoothness assumption, and that, on real-world image data, MMDAgg closely matches the power of tests leveraging the use of models such as neural networks.
Publisher
Cornell University Library, arXiv.org
Subject
This website uses cookies to ensure you get the best experience on our website.