MbrlCatalogueTitleDetail

Do you wish to reserve the book?
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects
Dissertation

HandyPose and VehiPose: Pose Estimation of Flexible and Rigid Objects

2021
Request Book From Autostore and Choose the Collection Method
Overview
Pose estimation is an important and challenging task in computer vision. Hand pose estimation has drawn increasing attention during the past decade and has been utilized in a wide range of applications including augmented reality, virtual reality, human-computer interaction, and action recognition. Hand pose is more challenging than general human body pose estimation due to the large number of degrees of freedom and the frequent occlusions of joints. To address these challenges, we propose HandyPose, a single-pass, end-to-end trainable architecture for hand pose estimation. Adopting an encoder-decoder framework with multi-level features, our method achieves high accuracy in hand pose while maintaining manageable size complexity and modularity of the network. HandyPose takes a multi-scale approach to representing context by incorporating spatial information at various levels of the network to mitigate the loss of resolution due to pooling. Our advanced multi-level waterfall architecture leverages the efficiency of progressive cascade filtering while maintaining larger fields-of-view through the concatenation of multi-level features from different levels of the network in the waterfall module. The decoder incorporates both the waterfall and multi-scale features for the generation of accurate joint heatmaps in a single stage. Recent developments in computer vision and deep learning have achieved significant progress in human pose estimation, but little of this work has been applied to vehicle pose. We also propose VehiPose, an efficient architecture for vehicle pose estimation, based on a multi-scale deep learning approach thatachieves high accuracy vehicle pose estimation while maintaining manageable network complexity and modularity. The VehiPose architecture combines an encoder-decoder architecture with a waterfall atrous convolution module for multi-scale feature representation. It incorporates contextual information across scales and performs the localization of vehicle keypoints in an end-to-end trainable network. Our HandyPose architecture has a baseline of vehipose with an improvement in performance by incorporating multi-level features from different levels of the backbone and introducing novel multi-level modules. HandyPose and VehiPose more thoroughly leverage the image contextual information and deal with the issue of spatial loss of resolution due to successive pooling while maintaining the size complexity, modularity of the network, and preserve the spatial information at various levels of the network. Our results demonstrate state-of-the-art performance on popular datasets and show that HandyPose and VehiPose are robust and efficient architectures for hand and vehicle pose estimation.
Publisher
ProQuest Dissertations & Theses
ISBN
9798759999126