Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
A BIM-Based Life Cycle Assessment Tool of Embodied Energy and Environmental Impacts of Reinforced Concrete Tall Buildings
by
Ma, Lijian
in
Architectural engineering
/ Architecture
2022
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A BIM-Based Life Cycle Assessment Tool of Embodied Energy and Environmental Impacts of Reinforced Concrete Tall Buildings
by
Ma, Lijian
in
Architectural engineering
/ Architecture
2022
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A BIM-Based Life Cycle Assessment Tool of Embodied Energy and Environmental Impacts of Reinforced Concrete Tall Buildings
Dissertation
A BIM-Based Life Cycle Assessment Tool of Embodied Energy and Environmental Impacts of Reinforced Concrete Tall Buildings
2022
Request Book From Autostore
and Choose the Collection Method
Overview
Today 55 percent of population in the world lives in urban areas which is expected to increase to 68 percent by the year 2050. In the cities, high-rise buildings as symbols of the modern cityscape are dominating the skylines, but the data to demonstrate their embodied energy and environmental impacts are scarce, compared to low- or mid-rise buildings. Reducing the embodied energy and environmental impacts of buildings is critical as about 42 percent of primary energy use and 39 percent of the global greenhouse gas (GHG) emissions come from the building sector. However, it is an overlooked area in embodied energy and environmental impacts of tall buildings. This doctoral research aims to investigate the effects of tall buildings on embodied energy and environmental impacts by using process-based life cycle assessment (LCA) methodology within Building Information Modelling (BIM) environment, which provides construction industry platform to incorporate sustainability information in architectural design. This doctoral research is carried out through a literature review on embodied energy of high-rise buildings. Current LCA methods of buildings are also discussed in the literature review. It then develops a framework for BIM-based assessment of the embodied energy and environmental impacts of tall buildings. To achieve that, a case study of tall reinforced concrete building is applied, by using ISO 14040 and 14044 guidelines with available database, Revit and Tally application in Revit. The author concentrates on embodied energy and environmental impacts of reinforced concrete tall buildings. Finally, the association between design and construction variables with embodied energy and environmental impacts is explored. This research will lead to significant contributions. A comprehensive study on embodied energy and environmental impacts of high-rise building will address a major gap in LCA literature. Researchers and environmental consultants can use the results of this research to create design tools to evaluate environmental impacts of high-rise buildings. Also, architects can use the results of this research to develop insight into the environmental performance of tall buildings in early design stage. Architects and engineers can also use the results to optimize tall building design for low embodied energy and environmental impacts. Finally, the results of this research will enable architects, engineers, planners, and policymakers develop more sustainable built environments.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9798438784104
This website uses cookies to ensure you get the best experience on our website.