MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Digging Deeper with Diffuse Correlation Spectroscopy
Digging Deeper with Diffuse Correlation Spectroscopy
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Digging Deeper with Diffuse Correlation Spectroscopy
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Digging Deeper with Diffuse Correlation Spectroscopy
Digging Deeper with Diffuse Correlation Spectroscopy

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Digging Deeper with Diffuse Correlation Spectroscopy
Digging Deeper with Diffuse Correlation Spectroscopy
Dissertation

Digging Deeper with Diffuse Correlation Spectroscopy

2016
Request Book From Autostore and Choose the Collection Method
Overview
Patients with neurological diseases are vulnerable to cerebral ischemia, which can lead to brain injury. In the intensive care unit (ICU), neuromonitoring techniques that can detect flow reductions would enable timely administration of therapies aimed at restoring adequate cerebral perfusion, thereby avoiding damage to the brain. However, suitable bedside neuromonitoring methods sensitive to changes of blood flow and/or oxygen metabolism have yet to be established.Near-infrared spectroscopy (NIRS) is a promising technique capable of noninvasively monitoring flow and oxygenation. Specifically, diffuse correlation spectroscopy (DCS) and time-resolved (TR) NIRS can be used to monitor blood flow and tissue oxygenation, respectively, and combined to measuring oxidative metabolism. The work presented in this thesis focused on advancing a DCS/TR-NIRS hybrid system for acquiring these physiological measurements at the bedside.The application of NIRS for neuromonitoring is favourable in the neonatal ICU since the relatively thin scalp and skull of infants has minimal effect on the detected optical signal. Considering this application, the validation of a combined DCS/NIRS method for measuring the cerebral metabolic rate of oxygen (CMRO2) was investigated in Chapter 2. Although perfusion changes measured by DCS have been confirmed by various flow modalities, characterization of photon scattering in the brain is not clearly understood. Chapter 3 presents the first DCS study conducted directly on exposed cortex to confirm that the Brownian motion model is the best flow model for characterizing the DCS signal. Furthermore, a primary limitation of DCS is signal contamination from extracerebral tissues in the adult head, causing CBF to be underestimated. In Chapter 4, a multi-layered model was implemented to separate signal contributions from scalp and brain; derived CBF changes were compared to computed tomography perfusion.Overall, this thesis advances DCS techniques by (i) quantifying cerebral oxygen metabolism, (ii) confirming the more appropriate flow model for analyzing DCS data and (iii) demonstrating the ability of DCS to measure CBF accurately despite the presence of a thick (1-cm) extracerebral layer. Ultimately, the work completed in this thesis should help with the development of a hybrid DCS/NIRS system suitable for monitoring cerebral hemodynamics and energy metabolism in critical-ill patients.