MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures
Dissertation

Exploring Microbial Growth of a Model Extremophile, Archaeoglobus Fulgidus, at Elevated Pressures

2019
Request Book From Autostore and Choose the Collection Method
Overview
Deep-sea vent and subsurface microorganisms are metabolically diverse and often display unique adaptive strategies that operate under elevated pressure conditions. However, because high hydrostatic pressure (HHP) laboratory cultivation has not been widely adopted, knowledge of how these microorganisms function in native high-pressure environments is limited. To explore how elevated pressures affect the metabolism and physiology of deep-sea and subsurface microorganisms, growth of a model extremophile, Archaeoglobus fulgidus (type strain VC16), was investigated up to 98 MPa in batch cultures for both chemoorganoheterotrophic and chemolithoautotrophic metabolisms. A. fulgidus is an anaerobic, hyperthermophilic sulfate reducing archaeon, first isolated from a shallow marine vent but has been commonly identified in high-pressure marine environments (to 2-4 km below sea level, 20-40 MPa), including deep-sea hydrothermal vents, deep geothermal wells, and deep oil reservoirs. In heterotrophic HHP cultivation experiments, exponential growth was observed up to 60 MPa. Cell densities were comparable from 0.1-40 MPa, while lower cell densities were observed at 50 MPa and 60 MPa and growth was inhibited at 70 MPa. A. fulgidus displayed both piezotolerance and moderate piezophily under certain heterotrophic HHP conditions. In autotrophic HHP conditions, A. fulgidus displayed piezotolerance with similar growth rates and maximum cell densities observed at up to 40 MPa and little to no growth was observed at 60 MPa. A. fulgidus biofilm production was observed in certain heterotrophic conditions from 0.1-50 MPa under HHP batch cultivation conditions due to both low calcium concentrations in the growth medium and the presence of a stainless steel needle that created a nucleation site. This suggests that biofilm production here was a response to growth medium chemistry and surface area, and was not related to the elevated pressure conditions. Here, A. fulgidus was shown to grow, and in some cases also produce biofilm, over a range of elevated pressure conditions. To the extent of our knowledge, piezotolerance to HHP for both heterotrophic and autotrophic metabolisms have not been previously measured for a single species. A. fulgidus’ metabolic plasticity and capacity for biofilm production reflects adaptive mechanisms that lend insight into how this species thrives in extreme and fluctuating environments.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9798351445137