MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows
Paper

Revealing microcanonical phases and phase transitions of strongly correlated electrons via time-averaged classical shadows

2023
Request Book From Autostore and Choose the Collection Method
Overview
Quantum computers and simulators promise to enable the study of strongly correlated quantum systems. Yet, surprisingly, it is hard for them to compute ground states. They can, however, efficiently compute the dynamics of closed quantum systems. We propose a method to study the quantum thermodynamics of strongly correlated electrons from quantum dynamics. We define time-averaged classical shadows (TACS) and prove it is a classical shadow(CS) of the von Neumann ensemble, the time-averaged density matrix. We then show that the diffusion maps, an unsupervised machine learning algorithm, can efficiently learn the phase diagram and phase transition of the one-dimensional transverse field Ising model both for ground states using CS \\emph{and state trajectories} using TACS. It does so from state trajectories by learning features that appear to be susceptibility and entropy from a total of 90,000 shots taken along a path in the microcanonical phase diagram. Our results suggest a low number of shots from quantum simulators can produce quantum thermodynamic data with a quantum advantage.