Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Unifying the Modelling of In-Nozzle Flow and Subsequent Spray Formation at High Pressure Injection Systems
by
Mcginn, Paul
in
Cavitation
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Unifying the Modelling of In-Nozzle Flow and Subsequent Spray Formation at High Pressure Injection Systems
by
Mcginn, Paul
in
Cavitation
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Unifying the Modelling of In-Nozzle Flow and Subsequent Spray Formation at High Pressure Injection Systems
Dissertation
Unifying the Modelling of In-Nozzle Flow and Subsequent Spray Formation at High Pressure Injection Systems
2023
Request Book From Autostore
and Choose the Collection Method
Overview
The modelling of internal and external flow phenomena of high pressure injection systems has developed significantly in the last few decades. The challenge currently however, is to model these areas of flow together accounting for different multi-phase phenomena that require a wide range of resolutions. More specifically, the highly turbulent nature of internal nozzle cavitation requires a high grid and temporal resolution, whereas the external nozzle atomisation processes exists over a comparatively much larger space with lower time and space resolution needed. The research described in this thesis is focused on coupling the internal nozzle and external processes using a single Eulerian Volume Of Fluid (VOF) multiphase model. First, investigations into the dynamics of internal nozzle cavitation is presented, through simulation of two phase nozzle flows without spray formation demonstrating sensitivities to discretization techniques and boundary conditions. Then, the simulation of internal nozzle cavitation with spray formation using a single model was achieved by the construction of a three phase VOF model with cavitation which is described. A non-condensable gaseous phase is considered alongside the liquid and vapours phases, the liquid interface is sharp with a diffusive interface between gaseous phases. Comparisons were made with both experimental data and previous numerical investigations. Finally, a new solver with the introduction of the Eulerian-Lagrangian Spray Atomization (ELSA) framework with the Interface Capturing Method (ICM) for surface density to the system to describe the liquid structures below the Sub-Grid Scale (SGS) is presented. Thus quantities such as droplet Sauter Mean Diameter (SMD) and droplet spray angle at these scales can be extracted, with comparisons made with experimental data. The coupling of the ELSA-ICM model with the three phase cavitating model allows for processes of the entire spray formation to be resolved. More specifically, for the first time, the evolving surfaces of the entire injection process, from internal nozzle cavitation to spray atomisation, can thus be tracked throughout even at the SGS. This allows for a direct insight into the interaction between the cavitation and atomisation processes.
Publisher
ProQuest Dissertations & Theses
Subject
MBRLCatalogueRelatedBooks
Related Items
Related Items
This website uses cookies to ensure you get the best experience on our website.