Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
by
Zhao, Zhipeng
, Zhou, Bo
, Liu, Zening
, Liu, Long
in
Adaptation
/ Knowledge management
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
by
Zhao, Zhipeng
, Zhou, Bo
, Liu, Zening
, Liu, Long
in
Adaptation
/ Knowledge management
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
Paper
Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Multi-source unsupervised domain adaptation (MUDA) aims to transfer knowledge from related source domains to an unlabeled target domain. While recent MUDA methods have shown promising results, most focus on aligning the overall feature distributions across source domains, which can lead to negative effects due to redundant features within each domain. Moreover, there is a significant performance gap between MUDA and supervised methods. To address these challenges, we propose a novel approach called Dynamic Domain Discrepancy Adjustment for Active Multi-Domain Adaptation (D3AAMDA). Firstly, we establish a multi-source dynamic modulation mechanism during the training process based on the degree of distribution differences between source and target domains. This mechanism controls the alignment level of features between each source domain and the target domain, effectively leveraging the local advantageous feature information within the source domains. Additionally, we propose a Multi-source Active Boundary Sample Selection (MABS) strategy, which utilizes a guided dynamic boundary loss to design an efficient query function for selecting important samples. This strategy achieves improved generalization to the target domain with minimal sampling costs. We extensively evaluate our proposed method on commonly used domain adaptation datasets, comparing it against existing UDA and ADA methods. The experimental results unequivocally demonstrate the superiority of our approach.
Publisher
Cornell University Library, arXiv.org
Subject
This website uses cookies to ensure you get the best experience on our website.