MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Planning and Policy Improvement
Planning and Policy Improvement
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Planning and Policy Improvement
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Planning and Policy Improvement
Planning and Policy Improvement

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Planning and Policy Improvement
Planning and Policy Improvement
Dissertation

Planning and Policy Improvement

2023
Request Book From Autostore and Choose the Collection Method
Overview
MuZero is currently the most successful general reinforcement learning algorithm, achieving the state of the art on Go, chess, shogi, and Atari. We want to help MuZero to be successful in even more domains. Towards that, we do three steps: 1) We identify MuZero's problems on stochastic environments and provide ways to model enough information to support causally correct planning. 2) We develop a strong baseline agent on Atari. This agent, named Muesli, matches the state of the art on Atari, even without deep search. The conducted ablations inform us about the importance of model learning, deep search, large networks, and regularized policy optimization. 3) Because MuZero's tree search is very helpful on Go and chess, we use the principle of policy improvement to design search algorithms with even better properties. The new algorithms, named Gumbel AlphaZero and Gumbel MuZero, match the state of the art on Go, chess, and Atari, and significantly improve prior performance when planning with few simulations.
Publisher
ProQuest Dissertations & Theses

MBRLCatalogueRelatedBooks