Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Planning and Policy Improvement
by
Danihelka, Ivo
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Do you wish to request the book?
Planning and Policy Improvement
by
Danihelka, Ivo
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dissertation
Planning and Policy Improvement
2023
Request Book From Autostore
and Choose the Collection Method
Overview
MuZero is currently the most successful general reinforcement learning algorithm, achieving the state of the art on Go, chess, shogi, and Atari. We want to help MuZero to be successful in even more domains. Towards that, we do three steps: 1) We identify MuZero's problems on stochastic environments and provide ways to model enough information to support causally correct planning. 2) We develop a strong baseline agent on Atari. This agent, named Muesli, matches the state of the art on Atari, even without deep search. The conducted ablations inform us about the importance of model learning, deep search, large networks, and regularized policy optimization. 3) Because MuZero's tree search is very helpful on Go and chess, we use the principle of policy improvement to design search algorithms with even better properties. The new algorithms, named Gumbel AlphaZero and Gumbel MuZero, match the state of the art on Go, chess, and Atari, and significantly improve prior performance when planning with few simulations.
Publisher
ProQuest Dissertations & Theses
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.