Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Structural Characterisation of Bdellovibrio Bacteriovorus Predatory Peptidoglycan Modifying Proteins
by
Valdivia Delgado, M S
in
Predation
2023
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Structural Characterisation of Bdellovibrio Bacteriovorus Predatory Peptidoglycan Modifying Proteins
by
Valdivia Delgado, M S
in
Predation
2023
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Structural Characterisation of Bdellovibrio Bacteriovorus Predatory Peptidoglycan Modifying Proteins
Dissertation
Structural Characterisation of Bdellovibrio Bacteriovorus Predatory Peptidoglycan Modifying Proteins
2023
Request Book From Autostore
and Choose the Collection Method
Overview
Bdellovibrio bacteriovorus is an endobiotic bacterial predator that encodes multiple enzymes related to known peptidoglycan (PG) modifiers, which are necessary for predation to occur. Additionally, a plethora of cryptic proteins are expressed and upregulated during predation. It has been shown that L,D-transpeptidases (LDTs) are required for bdelloplast formation and stabilisation. These LDTs cluster in six groups in B. bacteriovorus HD100, nevertheless, no further LDT information has been previously described. Here we have determined and analysed the structures of LDTs Bd0566, Bd1075, Bd3334 and Bd3741, showing that even though they share a structurally conserved catalytic domain, they have acquired accessory domains and motifs characteristic to each LDT group. Moreover, we have integrated these novel structures with the previously solved structures of Bd0553, Bd0886 and Bd1402, generating a panel of seven LDTs representing the six groups of B. bacteriovorus HD100, allowing us to propose possible roles and the structural determinants defining the transferase/crosslinking or hydrolytic activities of each group. Further, we report the structure of two predatory NlpC/P60 amidohydrolases/peptidases, Bd0601 and Bd1177. We have determined that Bd0601 is a DUF1460 amidohydrolase, wherein the PG stem peptide binding groove is blocked by a tyrosine residue, suggesting the need of a conformational rearrangement for substrate binding. On the other hand, we have determined that Bd1177 is a bilobular NlpC/P60, wherein the active site is located in the interface between the catalytic N-terminal domain and a novel C-terminal regulatory domain, suggesting that Bd1177 fluctuates to an open conformation upon substrate binding. Finally, we have determined the crystallographic structure of the cryptic secreted protein Bd0675, depicting a novel fold. The solved structure depicts a prominent central acidic and aromatic groove delimited by a conserved disulphide-stabilised loop, suggesting that this protein has ligand binding functions. Based on the solved structure we have tested different candidate ligands; however further experiments are required to propose a function for Bd0675. In addition, due to its novelty, Bd0675 was used as target for multiple structure predicting algorithms in CASP14.
Publisher
ProQuest Dissertations & Theses
Subject
This website uses cookies to ensure you get the best experience on our website.