MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools
Dissertation

Dissecting Tumor Clonality in Liver Cancer: A Phylogeny Analysis Using Computational and Statistical Tools

2023
Request Book From Autostore and Choose the Collection Method
Overview
Liver cancer is a heterogeneous disease characterized by extensive genetic and clonal diversity. Understanding the clonal evolution of liver tumors is crucial for developing effective treatment strategies. This dissertation aims to dissect the tumor clonality in liver cancer using computational and statistical tools, with a focus on phylogenetic analysis. Through advancements in defining and assessing phylogenetic clusters, we gain a deeper understanding of the survival disparities and clonal evolution within liver tumors, which can inform the development of tailored treatment strategies and improve patient outcomes.The thesis begins by providing an overview of sources of heterogeneity in liver cancer and data types, from Whole-Exome (WEX) and RNA sequencing (RNA-seq) read-counts by gene to derived quantities such as Copy Number Alterations (CNAs) and Single Nucleotide Variants (SNVs). Various tools for deriving copy-numbers are discussed and compared. Additionally, comparison of survival distributions is discussed.The central data analyses of the thesis concern the derivation of distinct clones and clustered phylogeny types from the basic genomic data in three independent cancer cohorts, TCGA-LIHC, TIGER-LC and NCI-MONGOLIA. The SMASH (Subclone multiplicity allocation and somatic heterogeneity) algorithm is introduced for clonality analysis, followed by a discussion on clustering analysis of nonlinear tumor evolution trees and the construction of phylogenetic trees for liver cancer cohorts. Identification of drivers of tumor evolution, and the immune cell micro-environment of tumors are also explored.In this research, we employ survival analysis tools to investigate and document survival differences between groups of subjects defined from phylogenetic clusters. Specifically, we introduce the log-rank test and its modifications for generic right-censored survival data, which we then apply to survival follow-up data for the subjects in the studied cohorts, clustered based on their genomic data. The final chapter of this thesis takes a significant step forward by extending an existing methodology for covariate-adjustment in the two-sample log-rank test to a K-sample scenario, with a specific focus on the already defined phylogeny cluster groups. This extension is not straightforward because the computation of the test statistic for K-sample and its asymptotic null distribution do not follow directly from the two-sample case. Using these extended tools, we conduct an illustrative data analysis with real data from the TIGER-LC cohort, which comprises subjects with analyzed and clustered genomic data, leading to defined phylogenetic clusters associated with two different types of liver cancer. By applying the extended methodology to this dataset, we aim to effectively assess and validate the survival curves of the defined clusters.
Publisher
ProQuest Dissertations & Theses
ISBN
9798380581875