MbrlCatalogueTitleDetail

Do you wish to reserve the book?
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
A pulsar-like swing in the polarisation position angle of a nearby fast radio burst
Paper

A pulsar-like swing in the polarisation position angle of a nearby fast radio burst

2024
Request Book From Autostore and Choose the Collection Method
Overview
Fast radio bursts (FRBs) last for milliseconds and arrive at Earth from cosmological distances. While their origin(s) and emission mechanism(s) are presently unknown, their signals bear similarities with the much less luminous radio emission generated by pulsars within our Galaxy and several lines of evidence point toward neutron star origins. For pulsars, the linear polarisation position angle (PA) often exhibits evolution over the pulse phase that is interpreted within a geometric framework known as the rotating vector model (RVM). Here, we report on a fast radio burst, FRB 20221022A, detected by the Canadian Hydrogen Intensity Mapping Experiment (CHIME) and localized to a nearby host galaxy (\\(\\sim 65\\; \\rm{Mpc}\\)), MCG+14-02-011. This one-off FRB displays a \\(\\sim 130\\) degree rotation of its PA over its \\(\\sim 2.5\\; \\rm{ms}\\) burst duration, closely resembling the \"S\"-shaped PA evolution commonly seen from pulsars and some radio magnetars. The PA evolution disfavours emission models involving shocks far from the source and instead suggests magnetospheric origins for this source which places the emission region close to the FRB central engine, echoing similar conclusions drawn from tempo-polarimetric studies of some repeating sources. This FRB's PA evolution is remarkably well-described by the RVM and, although we cannot determine the inclination and magnetic obliquity due to the unknown period/duty cycle of the source, we can dismiss extremely short-period pulsars (e.g., recycled millisecond pulsars) as potential progenitors. RVM-fitting appears to favour a source occupying a unique position in the period/duty cycle phase space that implies tight opening angles for the beamed emission, significantly reducing burst energy requirements of the source.