MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications
Dissertation

Development of a molecularly imprinted polymer specific for ochratoxin a: theoretical and sensor applications

2004
Request Book From Autostore and Choose the Collection Method
Overview
In this work the development of two molecularly imprinted polymers, specific for ochratoxin A, is presented. Ochratoxin A is produced by several Aspergillus and Penicillium species and is common in cereals and other starch rich foods and has also been found in coffee, dried fruits, wine, beer and meats. It demonstrates potent teratogenic, immunosuppressive, mutagenic and carcinogenic properties. The toxin is also linked to Balkan Endemic Nephropathy, a chronic kidney disease found in South-Eastern Europe. Due to this the European Union has set limits on foodstuffs ranging between 2-10 ng g-1. Therefore the requirement of a simple and inexpensive biosensor to monitor this legislation is a necessity. Currently detection is performed by chromatographic methods such as HPLC, and by ELISA formats. In this work two polymeric materials, rationally designed by computational modelling and synthesised using molecular imprinting, are studied. The modelling is complimented with a Nuclear Magnetic Resonance (NMR) study. The first polymer (Polymer A) consisted of 1 mol of acrylamide and 1 mol of methacrylic acid to 1 mol of template. This material demonstrated an unusual binding mechanism, working solely in aqueous solvents. A theoretical mechanism for this binding is presented and discussed. The second polymer, again rationally designed, but under different conditions, consisted of 1 mol of N,N- diethylamino ethyl methacrylate (DEAEM) to 1 mol of template. This polymer demonstrated high affinity for the template in acetonitrile. Polymer A is used in combination with an ion-exchange SPE protocol (developed for this purpose) for the extraction of OTA from maize. Both polymer compositions are used in development of a MIP membrane optical sensor, with partial success seen in the detection of OTA in grape juice and white wine.
Publisher
ProQuest Dissertations & Theses
Subject