Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Hypervelocity flow over spheres
by
Wen, Chihyung
in
Aerospace engineering
/ Aerospace materials
1994
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Do you wish to request the book?
Hypervelocity flow over spheres
by
Wen, Chihyung
in
Aerospace engineering
/ Aerospace materials
1994
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Dissertation
Hypervelocity flow over spheres
1994
Request Book From Autostore
and Choose the Collection Method
Overview
The nature of the nonequilibrium flow of dissociating gases over spheres was investigated experimentally, numerically and theoretically. A series of experiments with three different gases, nitrogen, air and carbon dioxide, was performed in the shock tunnel T5 at GALCIT. Five spheres of different radii equipped with thermocouples for surface heat flux measurements were used. The state-of-the-art numerical method by Candler (1988) was used to conduct a parallel study which strongly complemented the experimental and theoretical efforts. Experimental heat flux measurements are presented. Good agreement was observed among the measured stagnation point heat transfer rates, computational results and Fay and Riddell's theoretical predictions. For nitrogen and air, the measured heat flux distributions were also in good agreement with numerical computation results and Lees' theory. For carbon dioxide, large deviations were observed. Early transition tripped by surface roughness is a possible cause for the deviation of heat flux distribution from the theory. The experimental differential interferograms were compared with the images constructed from computational flowfields. Good agreement of fringe pattern and shock shape was observed. An analytical solution is obtained for inviscid hypervelocity dissociating flow over spheres. The solution explains the correlation between the dimensionless stand-off distance and the dimensionless reaction rate parameter previously observed by Hornung (1972) for nitrogen. The physics of the correlation can be shown as the binary scaling. Based on the solution, a new dimensionless reaction rate parameter is defined to generalize Hornung's correlation for more complex gases than nitrogen. Experimental and numerical results confirm the new correlation. The effect of nonequilibrium recombination downstream of a curved two-dimensional shock was also addressed. An analytical solution for an ideal dissociating gas was obtained, giving an expression for dissociation fraction as a function of temperature on a streamline. The solution agrees well with the numerical result and provides a rule of thumb to check the validity of binary scaling for the experimental conditions. The effects upon the binary scaling of the large difference in freestream temperature between flight and free-piston shock tunnel conditions are discussed.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
9798544287636
This website uses cookies to ensure you get the best experience on our website.