MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe
Paper

Enhancing the sensitivity of quantum fiber-optical gyroscopes via a non-Gaussian-state probe

2024
Request Book From Autostore and Choose the Collection Method
Overview
We propose a theoretical scheme to enhance the sensitivity of a quantum fiber-optical gyroscope (QFOG) via a non-Gaussian-state probe based on quadrature measurements of the optical field. The non-Gaussian-state probe utilizes the product state comprising a photon-added coherent state (PACS) with photon excitations and a coherent state CS. We study the sensitivity of the QFOG, and find that it can be significantly enhanced through increasing the photon excitations in the PACS probe. We investigate the influence of photon loss on the performance of QFOG and demonstrate that the PACS probe exhibits robust resistance to photon loss. Furthermore, we compare the performance of the QFOG using the PACS probe against two Gaussian-state probes: the CS probe and the squeezed state (SS) probe and indicate that the PACS probe offers a significant advantage in terms of sensitivity, regardless of photon loss, under the constraint condition of the same total number of input photons. Particularly, it is found that the sensitivity of the PACS probe can be three orders of magnitude higher than that of two Gaussian-state probes for certain values of the measured parameter. The capabilities of the non-Gaussian state probe on enhancing the sensitivity and resisting photon loss could have a wide-ranging impact on future high-performance QFOGs.