MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Modeling of laser-created plasmas and soft x-ray lasers
Modeling of laser-created plasmas and soft x-ray lasers
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Modeling of laser-created plasmas and soft x-ray lasers
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Modeling of laser-created plasmas and soft x-ray lasers
Modeling of laser-created plasmas and soft x-ray lasers

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Modeling of laser-created plasmas and soft x-ray lasers
Modeling of laser-created plasmas and soft x-ray lasers
Dissertation

Modeling of laser-created plasmas and soft x-ray lasers

2010
Request Book From Autostore and Choose the Collection Method
Overview
This dissertation describes the development of computer models to simulate laser created plasmas used to generate soft x-ray lasers. These compact short wavelength lasers have substantial average powers and very high peak brightness, that make them of significant interest for many applications. A better understanding of the plasmas is necessary to advance the development of these lasers into more compact, efficient, and higher power sources of coherent soft x-ray light. The plasma phenomena involved are complex, and require a detailed computer model of the coupled magneto-hydrodynamic and atomic physics processes to simulate their behavior. The computer models developed as part of this work consist of hydrodynamic equations, coupled with an atomic model, radiation transport, and a ray propagation equation. The models solve the equations in a 1.5D or 2D approximation, and predict the spatio-temporal plasma variation of the parameters, including the electron density and temperature, and the ion populations, which are then used to compute the population inversion and the resulting laser gain. A 3D post processor ray trace code was developed to simulate the amplification of stimulated emission along the plasma column length including saturation effects. This allows for the direct calculation of the soft x-ray laser output and its characteristics. Simulation results were compared with experiments conducted at Colorado State University. The general behavior of the plasma and the soft x-ray laser are well described by the model. A specific comparison of the model results with experimental measurements is presented for the case of a collisionally excited 13.2 nm wavelength Ni-like cadmium laser. The model predicts that an optical laser pulse of 1 J energy and 8 ps duration impinging at 23 degrees grazing incidence into a pre-created laser plasma can rapidly heat it to temperatures above 600 eV at a density of 2 x 1020 electrons/cm3 . This results in a computed peak small signal gain coefficient of 150 cm-1 in the 4d 1S0 to 4p 1P1 transition of Ni-like Cd at 13.2 nm. The model indicates that the amplified beam reaches the gain-saturated regime after 2.5 mm of propagation in the plasma, in agreement with the experimental observation of saturated behavior for propagation lengths of 2.5-3.0 mm. The computed soft x-ray laser pulse width of 5-9 ps moderately exceeds the experimental value of 5 ps and is the result of a stronger saturation broadening in the simulation. The simulated laser output energy of the order of 1 μJ is also in agreement with experiments. Simulations of injection-seeded Ne-like Ti and Ni-like Ag amplifiers that show very good agreement with the experimental results are presented. A direct comparison of the pulsewidth and the near and far-field beam profiles is made. Finally, the results of a simulation of a plasma created by irradiation of solid targets with a 46.9 nm soft x-ray laser, in which single photon photoionization is the dominant energy absorption mechanism are presented. Low absorption (silicon, Z=14) and high absorption (chromium, Z=24) targets were heated by ∼1 ns duration soft x-ray laser pulses. The experimental spectra agree with 1½ D simulations in showing that the Si plasmas are significantly colder and less ionized than the Cr plasma, confirming that in contrast to plasmas created by visible wavelength lasers the plasma properties are largely determined by the absorption coefficient of the target material.
Publisher
ProQuest Dissertations & Theses
ISBN
9781124184814, 1124184813