Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Heterogeneous Modeling of Medical Image Data Using B-Spline Functions
by
Grove, Olya
in
Biomedical engineering
/ Computer science
/ Medical imaging
2011
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Heterogeneous Modeling of Medical Image Data Using B-Spline Functions
by
Grove, Olya
in
Biomedical engineering
/ Computer science
/ Medical imaging
2011
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Heterogeneous Modeling of Medical Image Data Using B-Spline Functions
Dissertation
Heterogeneous Modeling of Medical Image Data Using B-Spline Functions
2011
Request Book From Autostore
and Choose the Collection Method
Overview
Ongoing developments in the field of medical imaging modalities have pushed the frontiers of modern medicine and biomedical engineering, prompting the need for new applications to improve diagnosis, treatment and prevention of diseases. Biomedical data visualization and modeling rely predominately on manual processing and utilization of voxel and facet based homogeneous models. Biological structures are naturally heterogeneous and in order to accurately design and biomimic biological structures, properties such as chemical composition, size and shape of biological constituents need to be incorporated in the computational biological models. Our proposed approach involves generating a density point cloud based on the intensity variations in a medical image slice, to capture tissue density variations through point cloud densities. The density point cloud is ordered and approximated with a set of cross-sectional least-squares B-Spline curves, based on which a skinned B-Spline surface is generated. The aim of this method is to capture and accurately represent density variations within the medical image data with a lofted surface function. The fitted B-Spline surface is sampled at uniformly distributed parameters, and our preliminary results indicate that the bio-CAD model preserves the density variations of the original image based point cloud. The resultant surface can thus be visualized by mapping the density in the parametric domain into color in pixel domain. The B-Spline function produced from each image slice can be used for medical visualization and heterogeneous tissue modeling. The process can be repeated for each slice in the medical dataset to produce heterogeneous B-Spline volumes. The emphasis of this research is placed on accuracy and shape fidelity needed for medical operations.
Publisher
ProQuest Dissertations & Theses
Subject
ISBN
1267042737, 9781267042736
This website uses cookies to ensure you get the best experience on our website.