Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via p53-mediated degradation
by
Sukhanova, Madina
, Ji, Peng
, Wang, Pan
, Aydemir, Inci
, Liu, Yijie
, Ren, Kehan
, Yang, Jing
, Bi, Honghao
, Han, Xu
, Li, Ermin
2025
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via p53-mediated degradation
by
Sukhanova, Madina
, Ji, Peng
, Wang, Pan
, Aydemir, Inci
, Liu, Yijie
, Ren, Kehan
, Yang, Jing
, Bi, Honghao
, Han, Xu
, Li, Ermin
2025
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via p53-mediated degradation
Journal Article
PPIL2 is a target of the JAK2/STAT5 pathway and promotes myeloproliferation via p53-mediated degradation
2025
Request Book From Autostore
and Choose the Collection Method
Overview
The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). Pleckstrin-2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we revealed peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in MPN patients and a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2 mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings revealed PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negatively regulating p53, thus providing a target and an opportunity for drug repurposing by using cyclosporin A to treat MPNs.The activated JAK2/STAT pathway is characteristic of myeloproliferative neoplasms (MPNs). Pleckstrin-2 (PLEK2) signalosome is downstream of the JAK2/STAT5 pathway and plays an important role in MPN development. The detailed molecular composition of this signalosome is unclear. Here, we revealed peptidylprolyl isomerase-like 2 (PPIL2) as a critical component of the complex in regulating human and murine erythropoiesis. PPIL2 was a direct target of STAT5 and was upregulated in MPN patients and a Jak2V617F MPN mouse model. Mechanistically, PPIL2 interacted with and catalyzed p53 polyubiquitination and proteasome-mediated degradation to promote cell growth. Ppil2 deficiency, or inhibition by cyclosporin A, led to a marked upregulation of p53 in vivo and ameliorated myeloproliferative phenotypes in Jak2V617F mice. Cyclosporin A also markedly reduced JAK2 mutated erythroid and myeloid proliferation in an induced pluripotent stem cell-derived human bone marrow organoid model. Our findings revealed PPIL2 as a critical component of the PLEK2 signalosome in driving MPN pathogenesis through negatively regulating p53, thus providing a target and an opportunity for drug repurposing by using cyclosporin A to treat MPNs.
MBRLCatalogueRelatedBooks
Related Items
Related Items
We currently cannot retrieve any items related to this title. Kindly check back at a later time.
This website uses cookies to ensure you get the best experience on our website.