Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
16 result(s) for "Aguilar-Martínez, José Antonio"
Sort by:
Arabidopsis BRANCHED1 Acts as an Integrator of Branching Signals within Axillary Buds
Shoot branching patterns depend on a key developmental decision: whether axillary buds grow out to give a branch or whether they remain dormant in the axils of leaves. This decision is controlled by endogenous and environmental stimuli mediated by hormonal signals. Although genes involved in the long-distance signaling of this process have been identified, the genes responding inside the buds to cause growth arrest remained unknown in Arabidopsis thaliana. Here, we describe an Arabidopsis gene encoding a TCP transcription factor closely related to teosinte branched1 (tb1) from maize (Zea mays), BRANCHED1 (BRC1), which represents a key point at which signals controlling branching are integrated within axillary buds. BRC1 is expressed in developing buds, where it arrests bud development. BRC1 downregulation leads to branch outgrowth. BRC1 responds to developmental and environmental stimuli controlling branching and mediates the response to these stimuli. Mutant and expression analyses suggest that BRC1 is downstream of the MORE AXILLARY GROWTH pathway and that it is required for auxin-induced apical dominance. Therefore, BRC1 acts inside the buds as an integrator of signals controlling bud outgrowth and translates them into a response of cell growth arrest. The conservation of BRC1/tb1 function among distantly related angiosperm species suggests that a single ancestral mechanism of branching control integration evolved before the radiation of flowering plants.
Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape
Despite a long-standing interest in the genetic basis of morphological diversity, the molecular mechanisms that give rise to developmental variation are incompletely understood. Here, we use comparative transcriptomics coupled with the construction of gene coexpression networks to predict a gene regulatory network (GRN) for leaf development in tomato and two related wild species with strikingly different leaf morphologies. The core network in the leaf developmental GRN contains regulators of leaf morphology that function in global cell proliferation with peripheral gene network modules (GNMs). The BLADE-ON-PETIOLE (BOP) transcription factor in one GNM controls the core network by altering effective concentration of the KNOTTED-like HOMEOBOX gene product. Comparative network analysis and experimental perturbations of BOP levels suggest that variation in BOP expression could explain the diversity in leaf complexity among these species through dynamic rewiring of interactions in the GRN. The peripheral location of the BOP -containing GNM in the leaf developmental GRN and the phenotypic mimics of evolutionary diversity caused by alteration in BOP levels identify a key role for this GNM in canalizing the leaf morphospace by modifying the maturation schedule of leaves to create morphological diversity.
Transcriptional, Posttranscriptional, and Posttranslational Regulation of SHOOT MERISTEMLESS Gene Expression in Arabidopsis Determines Gene Function in the Shoot Apex
The activity of SHOOT MERISTEMLESS (STM) is required for the functioning of the shoot apical meristem (SAM). STM is expressed in the SAM but is down-regulated at the site of leaf initiation. STM is also required for the formation of compound leaves. However, how the activity of STM is regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood. We previously found two conserved noncoding sequences in the promoters of STM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression of STM in leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrict STM expression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of the STM promoter identified a region required to repress the expression of STM in hypocotyls. Expression of STM in leaf primordia under the control of the JAGGED promoter produced plants with partially undifferentiated leaves. We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Transcriptional, Posttranscriptional, and Posttranslational Regulation ofSHOOT MERISTEMLESSGene Expression in Arabidopsis Determines Gene Function in the Shoot Apex
The activity ofSHOOT MERISTEMLESS (STM)is required for the functioning of the shoot apical meristem (SAM).STMis expressed n the SAM but is down-regulated at the site of leaf initiation.STMis also required for the formation of compound leaves. However, how the activity ofSTMis regulated at the transcriptional, posttranscriptional, and posttranslational levels is poorly understood.We previously found two conserved noncoding sequences in the promoters ofSTM-like genes across angiosperms, the K-box and the RB-box. Here, we characterize the function of the RB-box in Arabidopsis (Arabidopsis thaliana). The RB-box, along with the K-box, regulates the expression ofSTMin leaf sinuses, which are areas on the leaf blade with meristematic potential. The RB-box also contributes to restrictSTMexpression to the SAM. We identified FAR1-RELATED SEQUENCES-RELATED FACTOR1 (FRF1) as a binding factor to the RB-box region. FRF1 is an uncharacterized member of a subfamily of four truncated proteins related to the FAR1-RELATED SEQUENCES factors. Internal deletion analysis of theSTMpromoter identified a region required to repress the expression ofSTMin hypocotyls. Expression ofSTMin leaf primordia under the control of theJAGGEDpromoter produced plants with partially undifferentiated leaves.We further found that the ELK domain has a role in the posttranslational regulation of STM by affecting the nuclear localization of STM.
Analysis of the role of Arabidopsis class I TCP genes AtTCP7, AtTCP8, AtTCP22, and AtTCP23 in leaf development
TCP family of plant-specific transcription factors regulates plant form through control of cell proliferation and differentiation. This gene family is comprised of two groups, class I and class II. While the role of class II TCP genes in plant development is well known, data about the function of some class I TCP genes is lacking. We studied a group of phylogenetically related class I TCP genes: AtTCP7, AtTCP8, AtTCP22, and AtTCP23. The similar expression pattern in young growing leaves found for this group suggests similarity in gene function. Gene redundancy is characteristic in this group, as also seen in the class II TCP genes. We generated a pentuple mutant tcp8 tcp15 tcp21 tcp22 tcp23 and show that loss of function of these genes results in changes in leaf developmental traits. We also determined that these factors are able to mutually interact in a yeast two-hybrid assay and regulate the expression of KNOX1 genes. To circumvent the issue of genetic redundancy, dominant negative forms with SRDX repressor domain were used. Analysis of transgenic plants expressing AtTCP7-SRDX and AtTCP23-SRDX indicate a role of these factors in the control of cell proliferation.
Potential molecular patterns for tuberculosis susceptibility in diabetic patients with poor glycaemic control: a pilot study
Type 2 diabetes (DM2) is an increasingly prevalent disease that challenges tuberculosis (TB) control strategies worldwide. It is significant that DM2 patients with poor glycemic control (PDM2) are prone to developing tuberculosis. Furthermore, elucidating the molecular mechanisms that govern this susceptibility is imperative to address this problem. Therefore, a pilot transcriptomic study was performed. Human blood samples from healthy controls (CTRL, HbA1c < 6.5%), tuberculosis (TB), comorbidity TB-DM2, DM2 (HbA1c 6.5–8.9%), and PDM2 (HbA1c > 10%) groups (n = 4 each) were analyzed by differential expression using microarrays. We use a network strategy to identify potential molecular patterns linking the differentially expressed genes (DEGs) specific for TB-DM2 and PDM2 (p-value < 0.05, fold change > 2). We define OSM, PRKCD, and SOCS3 as key regulatory genes (KRGs) that modulate the immune system and related pathways. RT-qPCR assays confirmed upregulation of OSM, PRKCD, and SOCS3 genes (p < 0.05) in TB-DM2 patients (n = 18) compared to CTRL, DM2, PDM2, or TB groups (n = 17, 19, 15, and 9, respectively). Furthermore, OSM, PRKCD, and SOCS3 were associated with PDM2 susceptibility pathways toward TB-DM2 and formed a putative protein–protein interaction confirmed in STRING. Our results reveal potential molecular patterns where OSM, PRKCD, and SOCS3 are KRGs underlying the compromised immune response and susceptibility of patients with PDM2 to develop tuberculosis. Therefore, this work paved the way for fundamental research of new molecular targets in TB-DM2. Addressing their cellular implications, and the impact on the diagnosis, treatment, and clinical management of TB-DM2 could help improve the strategy to end tuberculosis for this vulnerable population.
Effect of Ionic Liquids in the Elaboration of Nanofibers of Cellulose Bagasse from Agave tequilana Weber var. azul by Electrospinning Technique
The objective of this paper was to report the effect of ionic liquids (ILs) in the elaboration of nanofibers of cellulose bagasse from Agave tequilana Weber var. azul by the electrospinning method. The ILs used were 1-butyl-3-methylimidazolium chloride (BMIMCl), and DMSO was added as co-solvent. To observe the effect of ILs, this solvent was compared with the organic solvent TriFluorAcetic acid (TFA). The nanofibers were characterized by transmission electron microscopy (TEM), X-ray, Fourier transform-infrared using attenuated total reflection (FTIR-ATR) spectroscopy, and thermogravimetric analysis (TGA). TEM showed different diameters (ranging from 35 to 76 nm) of cellulose nanofibers with ILs (CN ILs). According to X-ray diffraction, a notable decrease of the crystalline structure of cellulose treated with ILs was observed, while FTIR-ATR showed two bands that exhibit the physical interaction between cellulose nanofibers and ILs. TGA revealed that CN ILs exhibit enhanced thermal properties due to low or null cellulose crystallinity. CN ILs showed better characteristics in all analyses than nanofibers elaborated with TFA organic solvent. Therefore, CN ILs provide new alternatives for cellulose bagasse. Due to their small particle size, CN ILs could have several applications, including in food, pharmaceutical, textile, and material areas, among others.
Total en bloc vertebrectomy and immunochemotherapy for chondrosarcoma colliding with intraosseous lymphoma
A 59-year-old woman diagnosed with a Grade I chondrosarcoma in T7 underwent total en bloc vertebrectomy. Analysis of the surgical piece established diagnosis of a Grade 1 chondrosarcoma confined to T7. Surprisingly, an infiltration with diffuse large B-cell lymphoma was found. Systemic disease was ruled out and diagnosis was established as intracompartmental Grade 1 chondrosarcoma colliding with intraosseous extranodal diffuse large B-cell lymphoma. Resection of chondrosarcoma was considered complete and treatment with four cycles of RCHOP was indicated. Two years after surgery, the patient remains at complete metabolic response. To date, this is the first reported case of chondrosarcoma colliding with lymphoma. Although Grade 1 chondrosarcoma is typically managed with local control through complete surgical resection, the mentioned finding of the lymphoma indicated the need for systemic treatment with immunochemotherapy.