Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
5 result(s) for "Aimaier, Reyihanguli"
Sort by:
Transcriptome and metabolome analyses reveal that Bacillus subtilis BS-Z15 lipopeptides mycosubtilin homologue mediates plant defense responses
Microbial-plant interactions protect plants from external stimuli, releasing various elicitor that activate the plants defense response and regulate its growth. Bacillus subtilis BS-Z15 was screened from cotton inter-rhizosphere soil, antagonized various plant pathogens, and protected cotton against Verticillium dahliae . This study showed that the BS-Z15 lipopeptide mycosubtilin homologue could act as an elicitor to induce systemic resistance (ISR) in plants. Mycosubtilin homologue induced ROS burst and deposition, callose deposition, MAPK cascade phosphorylation, and up-regulated PR1 and PDF1.2 gene expression in Arabidopsis seedlings, moreover enhanced resistance of Arabidopsis to Pseudomonas syringae pv. Tomato DC3000 ( Pst DC3000) and V. dahliae. Transcriptome analysis was then used to evaluate the impact of mycosubtilin homologue on plant gene expression control. Mycosubtilin homologues activated Arabidopsis ISR on genes in metabolic pathways such as Arabidopsis plant-pathogen interactions, phenylpropanoid biosynthesis, MAPK signaling pathway, and phytohormone signaling. These analyses revealed that mycosubtilin homologues mediate the regulation of plant systemic resistance and growth and development by affecting related metabolites in glycolysis and gluconeogenesis, pentose phosphate pathway, tricarboxylic acid cycle, and amino acid metabolism in Arabidopsis . These findings confirmed that a mycosubtilin homologue could trigger the initiation of the Arabidopsis ISR by interacting with a variety of PTI components and transcriptional metabolic signaling pathways.
Effect of bacillus subtilis strain Z15 secondary metabolites on immune function in mice
Background Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. Results The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-γ), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). Conclusions BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.
Effect of bacillus subtilis strain Z15 secondary metabolites on immune function in mice
Previous studies have shown that secondary metabolites of Bacillus subtilis strain Z15 (BS-Z15) are effective in treating fungal infections in mice. To evaluate whether it also modulates immune function in mice to exert antifungal effects, we investigated the effect of BS-Z15 secondary metabolites on both the innate and adaptive immune functions of mice, and explored its molecular mechanism through blood transcriptome analysis. The study showed that BS-Z15 secondary metabolites increased the number of monocytes and platelets in the blood, improved natural killer (NK) cell activity and phagocytosis of monocytes-macrophages, increased the conversion rate of lymphocytes in the spleen, the number of T lymphocytes and the antibody production capacity of mice, and increased the levels of Interferon gamma (IFN-[gamma]), Interleukin-6 (IL-6), Immunoglobulin G (IgG) and Immunoglobulin M (IgM) in plasma. The blood transcriptome analysis revealed 608 differentially expressed genes following treatment with BS-Z15 secondary metabolites, all of which were significantly enriched in the Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) terms for immune-related entries and pathways such as Tumor Necrosis Factor (TNF) and Toll-like receptor (TLR) signaling pathways, and upregulated expression levels of immune-related genes such as Complement 1q B chain (C1qb), Complement 4B (C4b), Tetracyclin Resistant (TCR) and Regulatory Factor X, 5 (RFX5). BS-Z15 secondary metabolites were shown to enhance innate and adaptive immune function in mice, laying a theoretical foundation for its development and application in the field of immunity.