Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
67 result(s) for "Alard Roebroeck"
Sort by:
The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution
Functional magnetic resonance imaging (fMRI) is increasingly used to study functional connectivity in large-scale brain networks that support cognitive and perceptual processes. We face serious conceptual, statistical and data analysis challenges when addressing the combinatorial explosion of possible interactions within high-dimensional fMRI data. Moreover, we need to know, and account for, the physiological mechanisms underlying our signals. We argue here that (i) model selection procedures for connectivity should include consideration of more than just a few brain structures, (ii) temporal precedence – and causality concepts based on it – are essential in dynamic models of connectivity and (iii) undoing the effect of hemodynamics on fMRI data (by deconvolution) can be an important tool. However, it is crucially dependent upon assumptions that need to be verified.
Including diffusion time dependence in the extra-axonal space improves in vivo estimates of axonal diameter and density in human white matter
Axonal density and diameter are two fundamental properties of brain white matter. Recently, advanced diffusion MRI techniques have made these two parameters accessible in vivo. However, the techniques available to estimate such parameters are still under development. For example, current methods to map axonal diameters capture relative trends over different structures, but consistently over-estimate absolute diameters. Axonal density estimates are more accessible experimentally, but different modeling approaches exist and the impact of the experimental parameters has not been thoroughly quantified, potentially leading to incompatibility of results obtained in different studies using different techniques. Here, we characterise the impact of diffusion time on axonal density and diameter estimates using Monte Carlo simulations and STEAM diffusion MRI at 7T on 9 healthy volunteers. We show that axonal density and diameter estimates strongly depend on diffusion time, with diameters almost invariably overestimated and density both over and underestimated for some commonly used models. Crucially, we also demonstrate that these biases are reduced when the model accounts for diffusion time dependency in the extra-axonal space. For axonal density estimates, both upward and downward bias in different situations are removed by modeling extra-axonal time-dependence, showing increased accuracy in these estimates. For axonal diameter estimates, we report increased accuracy in ground truth simulations and axonal diameter estimates decreased away from high values given by earlier models and towards known values in the human corpus callosum when modeling extra-axonal time-dependence. Axonal diameter feasibility under both advanced and clinical settings is discussed in the light of the proposed advances.
Effective connectivity: Influence, causality and biophysical modeling
This is the final paper in a Comments and Controversies series dedicated to “The identification of interacting networks in the brain using fMRI: Model selection, causality and deconvolution”. We argue that discovering effective connectivity depends critically on state-space models with biophysically informed observation and state equations. These models have to be endowed with priors on unknown parameters and afford checks for model Identifiability. We consider the similarities and differences among Dynamic Causal Modeling, Granger Causal Modeling and other approaches. We establish links between past and current statistical causal modeling, in terms of Bayesian dependency graphs and Wiener–Akaike–Granger–Schweder influence measures. We show that some of the challenges faced in this field have promising solutions and speculate on future developments.
Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm
Reconstructing the macroscopic human cortical connectome by Diffusion Weighted Imaging (DWI) is a challenging research topic that has recently gained a lot of attention. In the present work, we investigate the effects of intra-voxel fiber direction modeling and tractography algorithm on derived structural network indices (e.g. density, small-worldness and global efficiency). The investigation is centered on three semi-independent distinctions within the large set of available diffusion models and tractography methods: i) single fiber direction versus multiple directions in the intra-voxel diffusion model, ii) deterministic versus probabilistic tractography and iii) local versus global measure-of-fit of the reconstructed fiber trajectories. The effect of algorithm and parameter choice has two components. First, there is the large effect of tractography algorithm and parameters on global network density, which is known to strongly affect graph indices. Second, and more importantly, there are remaining effects on graph indices which range in the tens of percent even when global density is controlled for. This is crucial for the sensitivity of any human structural network study and for the validity of study comparisons. We then investigate the effect of the choice of tractography algorithm on sensitivity and specificity of the resulting connections with a connectome dissection quality control (QC) approach. In this approach, evaluation of Tract Specific Density Coefficients (TSDCs) measures sensitivity while careful inspection of tractography path results assesses specificity. We use this to discuss interactions in the combined effects of these methods and implications for future studies. ► The tractography algorithm affects the topology of structural networks. ► Increased network density through retaining longer tracts underlies some effects. ► However, topology can change independent of network density. ► Small-worldness, efficiency and hubs are robust properties but their strength changes. ► We propose a connectome dissection QC approach using TSDC to guide algorithm choice.
Physiologically informed dynamic causal modeling of fMRI data
The functional MRI (fMRI) signal is an indirect measure of neuronal activity. In order to deconvolve the neuronal activity from the experimental fMRI data, biophysical generative models have been proposed describing the link between neuronal activity and the cerebral blood flow (the neurovascular coupling), and further the hemodynamic response and the BOLD signal equation. These generative models have been employed both for single brain area deconvolution and to infer effective connectivity in networks of multiple brain areas. In the current paper, we introduce a new fMRI model inspired by experimental observations about the physiological underpinnings of the BOLD signal and compare it with the generative models currently used in dynamic causal modeling (DCM), a widely used framework to study effective connectivity in the brain. We consider three fundamental aspects of such generative models for fMRI: (i) an adaptive two-state neuronal model that accounts for a wide repertoire of neuronal responses during and after stimulation; (ii) feedforward neurovascular coupling that links neuronal activity to blood flow; and (iii) a balloon model that can account for vascular uncoupling between the blood flow and the blood volume. Finally, we adjust the parameterization of the BOLD signal equation for different magnetic field strengths. This paper focuses on the form, motivation and phenomenology of DCMs for fMRI and the characteristics of the various models are demonstrated using simulations. These simulations emphasize a more accurate modeling of the transient BOLD responses — such as adaptive decreases to sustained inputs during stimulation and the post-stimulus undershoot. In addition, we demonstrate using experimental data that it is necessary to take into account both neuronal and vascular transients to accurately model the signal dynamics of fMRI data. By refining the models of the transient responses, we provide a more informed perspective on the underlying neuronal process and offer new ways of inferring changes in local neuronal activity and effective connectivity from fMRI. [Display omitted] •New physiological model for DCM of fMRI data supported by experimental observations•Excitatory–inhibitory neuronal model for a wide repertoire of neuronal responses•Feedforward neurovascular coupling that links neuronal activity to blood flow•Neuronal and vascular mechanisms to explain post-stimulus BOLD undershoot•Adjusted BOLD signal equation for different magnetic field strengths
Assessing Microstructural Substrates of White Matter Abnormalities: A Comparative Study Using DTI and NODDI
Neurite orientation dispersion and density imaging (NODDI) enables more specific characterization of tissue microstructure by estimating neurite density (NDI) and orientation dispersion (ODI), two key contributors to fractional anisotropy (FA). The present work compared NODDI- with diffusion tensor imaging (DTI)-derived indices for investigating white matter abnormalities in a clinical sample. We assessed the added value of NODDI parameters over FA, by contrasting group differences identified by both models. Diffusion-weighted images with multiple shells were acquired in a group of 8 healthy controls and 8 patients with an inherited metabolic disease. Both standard DTI and NODDI analyses were performed. Tract based spatial statistics (TBSS) was used for group inferences, after which overlap and unique contributions across different parameters were evaluated. Results showed that group differences in NDI and ODI were complementary, and together could explain much of the FA results. Further, compared to FA analysis, NDI and ODI gave a pattern of results that was more regionally specific and were able to capture additional discriminative voxels that FA failed to identify. Finally, ODI from single-shell NODDI analysis, but not NDI, was found to reproduce the group differences from the multi-shell analysis. To conclude, by using a clinically feasible acquisition and analysis protocol, we demonstrated that NODDI is of added value to standard DTI, by revealing specific microstructural substrates to white matter changes detected with FA. As the (simpler) DTI model was more sensitive in identifying group differences, NODDI is recommended to be used complementary to DTI, thereby adding greater specificity regarding microstructural underpinnings of the differences. The finding that ODI abnormalities can be identified reliably using single-shell data may allow the retrospective analysis of standard DTI with NODDI.
Scalable Labeling for Cytoarchitectonic Characterization of Large Optically Cleared Human Neocortex Samples
Optical clearing techniques and light sheet microscopy have transformed fluorescent imaging of rodent brains, and have provided a crucial alternative to traditional confocal or bright field techniques for thin sections. However, clearing and labeling human brain tissue through all cortical layers and significant portions of a cortical area, has so far remained extremely challenging, especially for formalin fixed adult cortical tissue. Here, we present MASH (Multiscale Architectonic Staining of Human cortex): a simple, fast and low-cost cytoarchitectonic labeling approach for optically cleared human cortex samples, which can be applied to large (up to 5 mm thick) formalin fixed adult brain samples. A suite of small-molecule fluorescent nuclear and cytoplasmic dye protocols in combination with new refractive index matching solutions allows deep volume imaging. This greatly reduces time and cost of imaging cytoarchitecture in thick samples and enables classification of cytoarchitectonic layers over the full cortical depth. We demonstrate application of MASH to large archival samples of human visual areas, characterizing cortical architecture in 3D from the scale of cortical areas to that of single cells. In combination with scalable light sheet imaging and data analysis, MASH could open the door to investigation of large human cortical systems at cellular resolution and in the context of their complex 3-dimensional geometry.
Individualized parcellation of the subthalamic nucleus in patients with Parkinson's disease with 7T MRI
Deep brain stimulation of the subthalamic nucleus (STN) is a widely performed surgical treatment for patients with Parkinson's disease. The goal of the surgery is to place an electrode centered in the motor region of the STN while lowering the effects of electrical stimulation on the non-motor regions. However, distinguishing the motor region from the neighboring associative and limbic areas in individual patients using imaging modalities was until recently difficult to obtain in vivo. Here, using ultra-high field MR imaging, we have performed a dissection of the subdivisions of the STN of individual Parkinson's disease patients. We have acquired 7T diffusion-weighted images of seventeen patients with Parkinson's disease scheduled for deep brain stimulation surgery. Using a structural connectivity-based parcellation protocol, the STN's connections to the motor, limbic, and associative cortical areas were used to map the individual subdivisions of the nucleus. A reproducible patient-specific parcellation of the STN into a posterolateral motor and gradually overlapping central associative area was found in all STNs, taking up on average 55.3% and 55.6% of the total nucleus volume. The limbic area was found in the anteromedial part of the nucleus. Our results suggest that 7T MR imaging may facilitate individualized and highly specific planning of deep brain stimulation surgery of the STN. •The subthalamic nucleus of individual Parkinson patients was parcellated at 7T MRI.•A motor zone was found posterolaterally.•Associative and limbic zones were found more anteriorly and anteromedially.•A gradual overlap of the functional zones was found within the STN.
Inconsistencies in atlas-based volumetric measures of the human nucleus basalis of Meynert: A need for high-resolution alternatives
The nucleus basalis of Meynert (nbM) is the major source of cortical acetylcholine (ACh) and has been related to cognitive processes and to neurological disorders. However, spatially delineating the human nbM in MRI studies remains challenging. Due to the absence of a functional localiser for the human nbM, studies to date have localised it using nearby neuroanatomical landmarks or using probabilistic atlases. To understand the feasibility of MRI of the nbM we set our four goals; our first goal was to review current human nbM region-of-interest (ROI) selection protocols used in MRI studies, which we found have reported highly variable nbM volume estimates. Our next goal was to quantify and discuss the limitations of existing atlas-based volumetry of nbM. We found that the identified ROI volume depends heavily on the atlas used and on the probabilistic threshold set. In addition, we found large disparities even for data/studies using the same atlas and threshold. To test whether spatial resolution contributes to volume variability, as our third goal, we developed a novel nbM mask based on the normalized BigBrain dataset. We found that as long as the spatial resolution of the target data was 1.3 mm isotropic or above, our novel nbM mask offered realistic and stable volume estimates. Finally, as our last goal we tried to discern nbM using publicly available and novel high resolution structural MRI ex vivo MRI datasets. We find that, using an optimised 9.4T quantitative T2⁎ ex vivo dataset, the nbM can be visualised using MRI. We conclude caution is needed when applying the current methods of mapping nbM, especially for high resolution MRI data. Direct imaging of the nbM appears feasible and would eliminate the problems we identify, although further development is required to allow such imaging using standard (f)MRI scanning.
Human larynx motor cortices coordinate respiration for vocal-motor control
Vocal flexibility is a hallmark of the human species, most particularly the capacity to speak and sing. This ability is supported in part by the evolution of a direct neural pathway linking the motor cortex to the brainstem nucleus that controls the larynx the primary sound source for communication. Early brain imaging studies demonstrated that larynx motor cortex at the dorsal end of the orofacial division of motor cortex (dLMC) integrated laryngeal and respiratory control, thereby coordinating two major muscular systems that are necessary for vocalization. Neurosurgical studies have since demonstrated the existence of a second larynx motor area at the ventral extent of the orofacial motor division (vLMC) of motor cortex. The vLMC has been presumed to be less relevant to speech motor control, but its functional role remains unknown. We employed a novel ultra-high field (7T) magnetic resonance imaging paradigm that combined singing and whistling simple melodies to localise the larynx motor cortices and test their involvement in respiratory motor control. Surprisingly, whistling activated both ‘larynx areas’ more strongly than singing despite the reduced involvement of the larynx during whistling. We provide further evidence for the existence of two larynx motor areas in the human brain, and the first evidence that laryngeal-respiratory integration is a shared property of both larynx motor areas. We outline explicit predictions about the descending motor pathways that give these cortical areas access to both the laryngeal and respiratory systems and discuss the implications for the evolution of speech.