Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
12
result(s) for
"Alhasaniah, Abdulaziz Hassan"
Sort by:
Pectin: A Bioactive Food Polysaccharide with Cancer Preventive Potential
by
Islam, Fahadul
,
Lima, Clara Mariana Gonçalves
,
Almazni, Ibrahim Abdullah
in
Animals
,
Antimitotic agents
,
Antineoplastic agents
2022
Pectin is an acidic heteropolysaccharide found in the cell walls and the primary and middle lamella of land plants. To be authorized as a food additive, industrial pectins must meet strict guidelines set forth by the Food and Agricultural Organization and must contain at least 65% polygalacturonic acid to achieve the E440 level. Fruit pectin derived from oranges or apples is commonly used in the food industry to gel or thicken foods and to stabilize acid-based milk beverages. It is a naturally occurring component and can be ingested by dietary consumption of fruit and vegetables. Preventing long-term chronic diseases like diabetes and heart disease is an important role of dietary carbohydrates. Colon and breast cancer are among the diseases for which data suggest that modified pectin (MP), specifically modified citrus pectin (MCP), has beneficial effects on the development and spread of malignancies, in addition to its benefits as a soluble dietary fiber. Cellular and animal studies and human clinical trials have provided corroborating data. Although pectin has many diverse functional qualities, this review focuses on various modifications used to develop MP and its benefits for cancer prevention, bioavailability, clinical trials, and toxicity studies. This review concludes that pectin has anti-cancer characteristics that have been found to inhibit tumor development and proliferation in a wide variety of cancer cells. Nevertheless, further clinical and basic research is required to confirm the chemopreventive or therapeutic role of specific dietary carbohydrate molecules.
Journal Article
Chemical Composition Antioxidant and Anti-Inflammatory Activities of Myrtus communis L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools
by
Kebsa, Widad
,
Akingbade, Tomilola Victor
,
Omoboyowa, Damilola Alex
in
Abietanes
,
Acids
,
anti-inflammatory
2024
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H2O2, with an IC50 of 17.81 ± 3.67 µg.mL−1. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.
Journal Article
Naringin and Naringenin Polyphenols in Neurological Diseases: Understandings from a Therapeutic Viewpoint
by
Mitra, Saikat
,
Alhasaniah, Abdulaziz Hassan
,
Sharma, Rohit
in
Alzheimer's disease
,
Antiinfectives and antibacterials
,
Antioxidants
2022
The glycosides of two flavonoids, naringin and naringenin, are found in various citrus fruits, bergamots, tomatoes, and other fruits. These phytochemicals are associated with multiple biological functions, including neuroprotective, antioxidant, anticancer, antiviral, antibacterial, anti-inflammatory, antiadipogenic, and cardioprotective effects. The higher glutathione/oxidized glutathione ratio in 3-NP-induced rats is attributed to the ability of naringin to reduce hydroxyl radical, hydroperoxide, and nitrite. However, although progress has been made in treating these diseases, there are still global concerns about how to obtain a solution. Thus, natural compounds can provide a promising strategy for treating many neurological conditions. Possible therapeutics for neurodegenerative disorders include naringin and naringenin polyphenols. New experimental evidence shows that these polyphenols exert a wide range of pharmacological activity; particular attention was paid to neurodegenerative diseases such as Alzheimer’s and Parkinson’s diseases, as well as other neurological conditions such as anxiety, depression, schizophrenia, and chronic hyperglycemic peripheral neuropathy. Several preliminary investigations have shown promising evidence of neuroprotection. The main objective of this review was to reflect on developments in understanding the molecular mechanisms underlying the development of naringin and naringenin as potential neuroprotective medications. Furthermore, the configuration relationships between naringin and naringenin are discussed, as well as their plant sources and extraction methods.
Journal Article
Cardioprotective Potential of Aqueous Extract of Fumaria indica on Isoproterenol-Induced Myocardial Infarction in SD Rats
by
Sajid, Aimen
,
Khan, Taous
,
Ikram, Muhammad
in
Antihypertensives
,
Coronary vessels
,
Data acquisition systems
2022
Ischemic heart disease (IHD) treatments and preventions by using plant extract and its phytochemical constituents have achieved considerable attention globally due to its cardioprotective effects. This study is aimed at investigating the cardioprotective and vascular effects of Fumaria indica (F. indica) crude extract on isoproterenol- (ISO-) induced myocardial infarction (MI) in Sprague-Dawley (SD) rats. Rats treated with isoproterenol (85 mg/kg, s.c), administered. Twice at an interval of 24 h showed a significant ST-segment elevation in ECG, edema, and necrosis in histopathology and also in troponin I (cTnI), creatine phosphokinase (CPK), lactate dehydrogenase (LDH), and aspartate aminotransferase (AST). Pretreatment with F. indica (10, 30, and 100 mg/kg, p.o) for 21 days significantly reversed the effects of isoproterenol-induced ischemic changes in the ECG, levels of cTnI, CPK, LDH, and AST, and histopathological changes. In isolated rat atrial strips, F. indica induced negative chronotropic and inotropic effects which were not affected by pretreatment with atropine, excluding role of cardiac muscarinic receptors. Cumulative addition of the extract induced a vasorelaxant effect on phenylephrine-evoked contractions in isolated rat aortic rings, which remained unchanged when challenged with L-NAME, excluding role of endothelial NO. However, extract of F. indica concentration dependently reversed contractions evoked with high K+, indicating calcium entry blocking effect. In conclusion, the F. indica extract is a cardioprotective remedy that ameliorates the isoproterenol-induced cardiotoxic effects and reverses cardiac ischemia, and the calcium antagonistic effect might be of useful in the treatment of MI.
Journal Article
Effect of Antioxidant-Rich Moringa Leaves on Quality and Functional Properties of Strawberry Juice
by
Jha, Ravi Prakash
,
Arif, Muhammad Adnan
,
Inam-ur-Raheem, Muhammad
in
Acidity
,
Acids
,
Agriculture
2022
Moringa oleifera and strawberry are cultivated extensively worldwide and are divinely blessed with an enormous amount of nutritional and medicinal constituents, such as vitamin C, vitamin E, iron, potassium, and phenolic antioxidants that play a pivotal role in treating, confining, and preventing diabetes and many kinds of cancer. The focus of the study is to develop different samples of highly acceptable ready to serve (RTS) Moringa strawberry juice blend by underutilizing Moringa and strawberry juice in different proportions. Moringa oleifera’s bitter taste and green color steeply limits its acceptability and counter this drawback utilized with strawberry juice. The physicochemical analysis of blended juice was performed to investigate the suitability and keeping quality of the juice mixture. The collected data signify that pH titratable acidity (TA) and total soluble solids (TSS) the slight modification after the inclusion of Moringa juice extract and throughout the storage. The Moringa treatment positively improved the total phenolic content (TPC), antioxidant, and vitamin C from 12 to 49.17 mg GAE/100g, 61.41 to 87.69%, and 64.03 to 86.65 mg/100 mL, respectively, but there was a slight decline in antioxidant quantity while stored under refrigerated conditions for one month. An assimilative trend was noticed in TPC and vitamin C, which collapsed from 49.17–36.32 mg GAE to 86.65–79.19 mg, respectively. In accordance with sensory analysis T2 (90% strawberry juice and 10% Moringa extract), the juice blend was rated best in context to flavor, color, and taste. This juice blend proved to be greatly effective especially for children suffering from malnutrition as well as women to counter with its appreciable number of nutritional constituents.
Journal Article
In vitro cytotoxicity of Withania somnifera (L.) roots and fruits on oral squamous cell carcinoma cell lines: a study supported by flow cytometry, spectral, and computational investigations
by
Orabi, Mohamed A. A.
,
Aldabaan, Nayef
,
Refaey, Mohamed S.
in
Acetic acid
,
Antitumor activity
,
Apoptosis
2024
Oral cancer is a severe health problem that accounts for an alarmingly high number of fatalities worldwide. Withania somnifera (L.) Dunal has been extensively studied against various tumor cell lines from different body organs, rarely from the oral cavity. We thus investigated the cytotoxicity of W. somnifera fruits (W-F) and roots (W-R) hydromethanolic extracts and their chromatographic fractions against oral squamous cell carcinoma (OSCC) cell lines [Ca9-22 (derived from gingiva), HSC-2, HSC-3, and HSC-4 (derived from tongue)] and three normal oral mesenchymal cells [human gingival fibroblast (HGF), human periodontal ligament fibroblast (HPLF), and human pulp cells (HPC)] in comparison to standard drugs. The root polar ethyl acetate (W-R EtOAc) and butanol (W-R BuOH) fractions exhibited the strongest cytotoxicity against the Ca9-22 cell line (CC 50 = 51.8 and 40.1 μg/mL, respectively), which is relatively the same effect as 5-FU at CC 50 = 69.4 μM and melphalan at CC 50 = 36.3 μM on the same cancer cell line. Flow cytometric analysis revealed changes in morphology as well as in the cell cycle profile of the W-R EtOAc and W-R BuOH-treated oral cancer Ca9-22 cells compared to the untreated control. The W-R EtOAc (125 μg/mL) exerted morphological changes and induced subG 1 accumulation, suggesting apoptotic cell death. A UHPLC MS/MS analysis of the extract enabled the identification of 26 compounds, mainly alkaloids, withanolides, withanosides, and flavonoids. Pharmacophore-based inverse virtual screening proposed that BRD3 and CDK2 are the cancer-relevant targets for the annotated withanolides D ( 18 ) and O ( 12 ), and the flavonoid kaempferol ( 11 ). Molecular modeling studies highlighted the BRD3 and CDK2 as the most probable oncogenic targets of anticancer activity of these molecules. These findings highlight W. somnifera ’s potential as an affordable source of therapeutic agents for a range of oral malignancies.
Journal Article
Ceiba pentandra ethyl acetate extract improves doxorubicin antitumor outcomes against chemically induced liver cancer in rat model: a study supported by UHPLC-Q-TOF-MS/MS identification of the bioactive phytomolecules
by
Darwish, Faten M. M.
,
Elsadek, Bakheet E. M.
,
Orabi, Mohamed A. A.
in
Acetic acid
,
AFP-l3
,
Angiogenesis
2024
Hepatocellular carcinoma (HCC) is a prevalent cancer worldwide. Late-stage detection, ineffective treatments, and tumor recurrence contribute to the low survival rate of the HCC. Conventional chemotherapeutic drugs, like doxorubicin (DOX), are associated with severe side effects, limited effectiveness, and tumor resistance. To improve therapeutic outcomes and minimize these drawbacks, combination therapy with natural drugs is being researched. Herein, we assessed the antitumor efficacy of Ceiba pentandra ethyl acetate extract alone and in combination with DOX against diethylnitrosamine (DENA)-induced HCC in rats. Our in vivo study significantly revealed improvement in the liver-function biochemical markers (ALT, AST, GGT, and ALP), the tumor marker (AFP-L3), and the histopathological features of the treated groups. A UHPLC-Q-TOF-MS/MS analysis of the Ceiba pentandra ethyl acetate extract enabled the identification of fifty phytomolecules. Among these are the dietary flavonoids known to have anticancer, anti-inflammatory, and antioxidant qualities: protocatechuic acid, procyanidin B2, epicatechin, rutin, quercitrin, quercetin, kaempferol, naringenin, and apigenin. Our findings highlight C. pentandra as an affordable source of phytochemicals with possible chemosensitizing effects, which could be an intriguing candidate for the development of liver cancer therapy, particularly in combination with chemotherapeutic drugs.
Journal Article
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
2024
Lignan phytomolecules demonstrate promising anti-Alzheimer activity by alleviating dementia and preserving nerve cells. The purpose of this work is to characterize the lignans of Anisacanthus virgularis and explore their potential anti-acetylcholinesterase and anti-ageing effects. Phytochemical investigation of A. virgularis aerial parts afforded a new furofuranoid-type lignan (1), four known structural analogues, namely pinoresinol (2), epipinoresinol (3), phillyrin (4), and pinoresinol 4-O-β-d-glucoside (5), in addition to p-methoxy-trans-methyl cinnamate (6) and 1H-indole-3-carboxaldehyde (7). The structures were established from thorough spectroscopic analyses and comparisons with the literature. Assessment of the anticholinesterase activity of the lignans 1–5 displayed noticeable enzyme inhibition of 1 (IC50 = 85.03 ± 4.26 nM) and 5 (64.47 ± 2.75 nM) but lower activity of compounds 2–4 as compared to the reference drug donepezil. These findings were further emphasized by molecular docking of 1 and 5 with acetylcholinesterase (AChE). Rapid overlay chemical similarity (ROCS) and structure–activity relationships (SAR) analysis highlighted and rationalized the anti-AD capability of these compounds. Telomerase activation testing of the same isolates revealed 1.64-, 1.66-, and 1.72-fold activations in cells treated with compounds 1, 5, and 4, respectively, compared to untreated cells. Our findings may pave the way for further investigations into the development of anti-Alzheimer and/or anti-ageing drugs from furofuranoid-type lignans.
Journal Article
Chemical Composition Antioxidant and Anti-Inflammatory Activities of IMyrtus communis/I L. Leaf Extract: Forecasting ADMET Profiling and Anti-Inflammatory Targets Using Molecular Docking Tools
by
Kebsa, Widad
,
Oraig, Mohammed A
,
Akingbade, Tomilola Victor
in
Amino acids
,
Anti-inflammatory drugs
,
Antioxidants
2024
Compounds derived from natural sources continue to serve as chemical scaffolds for designing prophylactic/therapeutic options for human healthcare. In this study, we aimed to systematically unravel the chemical profile and antioxidant and anti-inflammatory activities of myrtle methanolic extract (MMEx) using in vitro, in vivo, and in silico approaches. High levels of TPC (415.85 ± 15.52 mg GAE/g) and TFC (285.80 ± 1.64 mg QE/g) were observed. Mass spectrophotometry (GC-MS) analysis revealed the presence of 1,8-cineole (33.80%), α-pinene (10.06%), linalool (4.83%), p-dimethylaminobenzophenone (4.21%), thunbergol (4%), terpineol (3.60%), cis-geranyl acetate (3.25%), and totarol (3.30%) as major compounds. MMEx induced pronounced dose-dependent inhibition in all assays, and the best antioxidant activity was found with H[sub.2]O[sub.2], with an IC[sub.50] of 17.81 ± 3.67 µg.mL[sup.−1]. MMEx showed a good anti-inflammatory effect in vivo by limiting the development of carrageenan-induced paw edema. The pharmacokinetic profiles of the active molecules were determined using the SwissADME website, followed by virtual screening against anti-inflammatory targets including phospholipase A2 (PLA-2), cyclooxygenase-2 (COX-2), tumor necrosis factor alpha (TNF-α), interleukin-1β (IL-1β), and NF-κB. A pharmacokinetic study revealed that the molecules have good absorption, distribution, and metabolism profiles, with negative organ toxicity. Among the compounds identified by GC-MS analysis, pinostrobin chalcone, cinnamyl cinnamate, hedycaryol, totarol, and p-dimethylaminobenzophenone were observed to have good binding scores, thus appreciable anti-inflammatory potential. Our study reveals that MMEx from Algerian Myrtus communis L. can be considered to be a promising candidate for alleviating many health complaints associated with oxidative stress and inflammation.
Journal Article
Serological markers of transfusion transmissible infections and ABO blood groups in Najran, Saudi Arabia
by
Alshamrani, Saleh A.
,
Elnoubi, Osman AE
,
Mohammed Abdul, Khaja Shameem
in
Biological markers
,
Blood banks
,
Blood donors
2024
Objectives: To ascertain the prevalence of transfusion transmissible infections (TTIs) across diverse donor groups in the Najran province. Additionally, to establish a potential association between the development of TTI and the donors' blood group, as determined by the ABO/Rh blood grouping system. Methods: Blood donation data of 4120 donors, spanning from January to December 2020, were retrospectively reviewed. The blood were screened for TTI markers, including hepatitis B surface antigen (HBsAg), anti-hepatitis B core (anti-HBc), anti-hepatitis C virus (anti-HCV), anti-human immunodeficiency viruses 1 and 2 (anti-HIV1&2), anti-human T-lymphotropic virus types 1 and 2 (anti-HTLV-1&2), and syphilis antigen. Results: Positive TTI markers were detected in 10.9% of the donors. The most detected TTI marker was anti-HBc (8.9%), followed by HBsAg (0.7%). Other markers were individually detected in <1% of the donors. Anti-HBc-positive was significantly elevated among non-Saudi blood donors. There was an association between age groups and anti-HCV (p=0.002), anti-HTLV (p=0.004) and syphilis antigen (p=0.02) markers positivity. The AB positive blood group exhibited the most positivity for TTI markers, followed by O positive blood group. Similarly, association was found between ABO group and HBsAg (p=0.01), anti-HBc (p=0.001), and anti-HCV (p<0.001) markers positivity. Conclusion: Emphasis on implementing robust screening measures for donated blood is underscored by this study. There is the need for future study to extensively evaluate TTI status to enhance our understanding of the trend in TTI. Keywords: transfusion transmissible infection, TTI, blood donor, blood group, marker, seroprevalence
Journal Article