MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling
Journal Article

Furofuranoid-Type Lignans and Related Phenolics from Anisacanthus virgularis (Salisb.) Nees with Promising Anticholinesterase and Anti-Ageing Properties: A Study Supported by Molecular Modelling

2024
Request Book From Autostore and Choose the Collection Method
Overview
Lignan phytomolecules demonstrate promising anti-Alzheimer activity by alleviating dementia and preserving nerve cells. The purpose of this work is to characterize the lignans of Anisacanthus virgularis and explore their potential anti-acetylcholinesterase and anti-ageing effects. Phytochemical investigation of A. virgularis aerial parts afforded a new furofuranoid-type lignan (1), four known structural analogues, namely pinoresinol (2), epipinoresinol (3), phillyrin (4), and pinoresinol 4-O-β-d-glucoside (5), in addition to p-methoxy-trans-methyl cinnamate (6) and 1H-indole-3-carboxaldehyde (7). The structures were established from thorough spectroscopic analyses and comparisons with the literature. Assessment of the anticholinesterase activity of the lignans 1–5 displayed noticeable enzyme inhibition of 1 (IC50 = 85.03 ± 4.26 nM) and 5 (64.47 ± 2.75 nM) but lower activity of compounds 2–4 as compared to the reference drug donepezil. These findings were further emphasized by molecular docking of 1 and 5 with acetylcholinesterase (AChE). Rapid overlay chemical similarity (ROCS) and structure–activity relationships (SAR) analysis highlighted and rationalized the anti-AD capability of these compounds. Telomerase activation testing of the same isolates revealed 1.64-, 1.66-, and 1.72-fold activations in cells treated with compounds 1, 5, and 4, respectively, compared to untreated cells. Our findings may pave the way for further investigations into the development of anti-Alzheimer and/or anti-ageing drugs from furofuranoid-type lignans.