Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
227 result(s) for "Ana Vukovic"
Sort by:
Behavior change due to COVID-19 among dental academics—The theory of planned behavior: Stresses, worries, training, and pandemic severity
COVID-19 pandemic led to major life changes. We assessed the psychological impact of COVID-19 on dental academics globally and on changes in their behaviors. We invited dental academics to complete a cross-sectional, online survey from March to May 2020. The survey was based on the Theory of Planned Behavior (TPB). The survey collected data on participants' stress levels (using the Impact of Event Scale), attitude (fears, and worries because of COVID-19 extracted by Principal Component Analysis (PCA), perceived control (resulting from training on public health emergencies), norms (country-level COVID-19 fatality rate), and personal and professional backgrounds. We used multilevel regression models to assess the association between the study outcome variables (frequent handwashing and avoidance of crowded places) and explanatory variables (stress, attitude, perceived control and norms). 1862 academics from 28 countries participated in the survey (response rate = 11.3%). Of those, 53.4% were female, 32.9% were <46 years old and 9.9% had severe stress. PCA extracted three main factors: fear of infection, worries because of professional responsibilities, and worries because of restricted mobility. These factors had significant dose-dependent association with stress and were significantly associated with more frequent handwashing by dental academics (B = 0.56, 0.33, and 0.34) and avoiding crowded places (B = 0.55, 0.30, and 0.28). Low country fatality rates were significantly associated with more handwashing (B = -2.82) and avoiding crowded places (B = -6.61). Training on public health emergencies was not significantly associated with behavior change (B = -0.01 and -0.11). COVID-19 had a considerable psychological impact on dental academics. There was a direct, dose-dependent association between change in behaviors and worries but no association between these changes and training on public health emergencies. More change in behaviors was associated with lower country COVID-19 fatality rates. Fears and stresses were associated with greater adoption of preventive measures against the pandemic.
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth’s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥ 0.5), very high (SI ≥ 0.7), and the highest potential (SI ≥ 0.9) for dust emission cover > 1 670 000 km2 , > 560 000 km2 , and > 240 000 km2 , respectively. In the Arctic HLD region (≥ 60◦ N), land area with SI ≥ 0.5 is 5.5 % (1 035 059 km2), area with SI ≥ 0.7 is 2.3 % (440 804 km2), and area with SI ≥ 0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50◦ N, with a “transitional HLD-source area” extending at latitudes 50–58◦ N in Eurasia and 50–55◦ N in Canada and a “cold HLD-source area” including areas north of 60◦ N in Eurasia and north of 58◦ N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD.
Vermicomposting—Facts, Benefits and Knowledge Gaps
Industrialization and urbanization have led to an increased accumulation of waste materials that are transformed into a nutrient-rich and high-quality product called vermicompost by the vermicomposting process. Vermicomposting is an ecofriendly and economically favorable biotechnological process that involves the interaction of earthworms and microorganisms. Due to the importance of this process and its great potential in dealing with the consequences of waste accumulation, this review aims to provide key insights as well as highlight knowledge gaps. It is emphasized that there is a great challenge in understanding and clarifying the mechanisms involved in the vermicomposting process. The optimization of the factors affecting the possible application of vermicompost is crucial for obtaining the final product. Information on the composition of bacterial communities, amount of vermicompost, effect on heavy metal content, plant pathogens, diseases and organic waste selection is here recognized as currently the most important issues to be addressed. By answering these knowledge gaps, it is possible to enable wider utilization of vermicompost products.
Uranium accumulation and its phytotoxicity symptoms in Pisum sativum L
Environmental contamination by uranium (U) and other radionuclides is a serious problem worldwide, especially due to, e.g. mining activities. Ultimate accumulation of released U in aquatic systems and soils represent an escalating problem for all living organisms. In order to investigate U uptake and its toxic effects on Pisum sativum L., pea plantlets were hydroponically grown and treated with different concentrations of U. Five days after exposure to 25 and 50 μM U, P. sativum roots accumulated 2327.5 and 5559.16 mg kg −1 of U, respectively, while in shoots concentrations were 11.16 and 12.16 mg kg −1 , respectively. Plants exposed to both U concentrations showed reduced biomass of shoots and reduced content of photosynthetic pigments (total chlorophyll and carotenoids) relative to control. As a biomarker of oxidative stress, lipid peroxidation (LPO) levels were determined, while antioxidative response was determined by catalase (CAT) and glutathione reductase (GR) activities as well as cysteine (Cys) and non-protein thiol (NP-SH) concentrations, both in roots and shoots. Both U treatments significantly increased LPO levels in roots and shoots, with the highest level recorded at 50 μM U, 50.38% in shoots and 59.9% in roots relative to control. U treatment reduced GR activity in shoots, while CAT activity was increased only in roots upon treatment with 25 μM U. In pea roots, cysteine content was significantly increased upon treatment with both U concentrations, for 19.8 and 25.5%, respectively, compared to control plants, while NP-SH content was not affected by the applied U. This study showed significant impact of U on biomass production and biochemical markers of phytotoxicity in P. sativum , indicating presence of oxidative stress and cellular redox imbalance in roots and shoots. Obtained tissue-specific response to U treatment showed higher sensitivity of shoots compared to roots. Much higher accumulation of U in pea roots compared to shoots implies potential role of this species in phytoremediation process.
Pediatric siMS score: A new, simple and accurate continuous metabolic syndrome score for everyday use in pediatrics
The dichotomous nature of the current definition of metabolic syndrome (MS) in youth results in loss of information. On the other hand, the calculation of continuous MS scores using standardized residuals in linear regression (Z scores) or factor scores of principal component analysis (PCA) is highly impractical for clinical use. Recently, a novel, easily calculated continuous MS score called siMS score was developed based on the IDF MS criteria for the adult population. To develop a Pediatric siMS score (PsiMS), a modified continuous MS score for use in the obese youth, based on the original siMS score, while keeping the score as simple as possible and retaining high correlation with more complex scores. The database consisted of clinical data on 153 obese (BMI ≥95th percentile) children and adolescents. Continuous MS scores were calculated using Z scores and PCA, as well as the original siMS score. Four variants of PsiMS score were developed in accordance with IDF criteria for MS in youth and correlation of these scores with PCA and Z score derived MS continuous scores was assessed. PsiMS score calculated using formula: (2xWaist/Height) + (Glucose(mmol/l)/5.6) + (triglycerides(mmol/l)/1.7) + (Systolic BP/130)-(HDL(mmol/l)/1.02) showed the highest correlation with most of the complex continuous scores (0.792-0.901). The original siMS score also showed high correlation with continuous MS scores. PsiMS score represents a practical and accurate score for the evaluation of MS in the obese youth. The original siMS score should be used when evaluating large cohorts consisting of both adults and children.
Prevalence and Data Availability of Early Childhood Caries in 193 United Nations Countries, 2007–2017
Objectives. To assess the relationship between health care system and economic factors and early childhood caries (ECC) data availability and prevalence. Methods. We estimated ECC data for 193 United Nations countries from studies published between 2007 and 2017. We obtained other variables from the World Health Organization and the World Bank databases. We assessed association with ECC data availability by using logistic regression and with ECC prevalence by using linear regression. Results. We included 190 publications from 88 (45.6%) countries. The mean ECC prevalence was 23.8% and 57.3% in children younger than 36 months and children aged 36 to 71 months, respectively. The odds of ECC data availability were significantly higher for countries with more physicians and more dentists. In children younger than 36 months, ECC prevalence was associated with universal health coverage (B = −6.56). In children aged 36 to 71 months, it was associated with growth of gross national income (B = 0.27). Conclusions. Countries with more physicians and more dentists were more likely to have ECC data. Among those with data, countries with higher economic growth had higher ECC prevalence.
Observing Mineral Dust in Northern Africa, the Middle East, and Europe: Current Capabilities and Challenges ahead for the Development of Dust Services
Mineral dust produced by wind erosion of arid and semiarid surfaces is a major component of atmospheric aerosol that affects climate, weather, ecosystems, and socioeconomic sectors such as human health, transportation, solar energy, and air quality. Understanding these effects and ultimately improving the resilience of affected countries requires a reliable, dense, and diverse set of dust observations, fundamental for the development and the provision of skillful dust-forecast-tailored products. The last decade has seen a notable improvement of dust observational capabilities in terms of considered parameters, geographical coverage, and delivery times, as well as of tailored products of interest to both the scientific community and the various end-users. Given this progress, here we review the current state of observational capabilities, including in situ, ground-based, and satellite remote sensing observations in northern Africa, the Middle East, and Europe for the provision of dust information considering the needs of various users. We also critically discuss observational gaps and related unresolved questions while providing suggestions for overcoming the current limitations. Our review aims to be a milestone for discussing dust observational gaps at a global level to address the needs of users, from research communities to nonscientific stakeholders.
Observed Changes in Climate Conditions and Weather-Related Risks in Fruit and Grape Production in Serbia
Climate change, through changes in temperature, precipitation, and frequency of extreme events, has influenced agricultural production and food security over the past several decades. In order to assess climate and weather-related risks to fruit and grape production in Serbia, changes in bioclimatic indices and frequency of the occurrence of unfavourable weather events are spatially analysed for the past two decades (1998–2017) and the standard climatological period 1961–1990. Between the two periods, the Winkler and Huglin indices changed into a warmer category in most of the viticultural regions of Serbia. The average change shift was about 200 m towards higher elevations. Regarding the frequency of spring frost, high summer temperatures and water deficit, the most vulnerable regions in terms of fruit and grape production are found alongside large rivers (Danube, Sava, Great and South Morava), as well as in the northern part of the country. Regions below 300 m are under increased risk of high summer temperatures, as the number and duration of occurrences increased significantly over the studied periods. The high-resolution spatial analysis presented here gives an assessment of the climate change influence on the fruit and grapes production. The presented approach may be used in regional impact assessments and national planning of adaptation measures, and it may help increase resilience of agricultural production to climate change.
Climate Potential for Apple Growing in Norway—Part 2: Assessment of Suitability of Heat Conditions under Future Climate Change
The commercial apple production in Norway is limited to the small regions along the fjords in the southwest part of the country and around lakes or near the sea in the southeast with favorable climate. Due to the rapid rate of climate change over the recent decades, it is expected that suitable heat conditions for apple growing will expand to the areas that were previously too cold. This study analyses the heat suitability of future climate (2021–2100) under the RCP8.5 scenario for 6 common apple varieties in Norway: Discovery, Gravenstein, Summerred, Aroma, Rubinstep and Elstar. Previously established heat requirement criteria (based on the temperature threshold for the full blooming and growing degree days sum between the full bloom and harvest) are applied to the temperature outputs of the regional climate models downscaled to 1 km resolution. The assessment indicates that as temperature rises, heat conditions suitable for cultivation of all 6 apple varieties will expand. According to the ensemble median value, areas with the favorable heat conditions for growing at least one of the considered apple varieties will increase 25 times in the period 2021–2040 and 60 times in the period 2041–2060, compared to the referent period 1971–2000. At the same time, areas suitable for all 6 apple varieties will increase 3 times in the first, and 3.8 times in the latter period. The favorable areas will advance from south and southeast northwards and inland in the eastern region, along the west and northwestern coastline towards higher latitudes, and along continental parts of fjords. The fastest expansion of heat suitable conditions is expected for Discovery and Gravenstein. The findings of this study are relevant for zoning apple production future potential and for strategical planning of climate change adaptation measures within the sector. Weather-related risks, such as risks from winter low temperatures, spring frost, drought and extreme precipitation were not considered.
Physiological, Biochemical and Molecular Response of Different Winter Wheat Varieties under Drought Stress at Germination and Seedling Growth Stage
Due to climate change in recent years, there has been an increasing water deficit during the winter wheat sowing period. This study evaluated six Croatian winter wheat varieties’ physiological, biochemical, and molecular responses under two drought stress levels at the germination/seedling growth stage. Lipid peroxidation was mainly induced under both drought stress treatments, while the antioxidative response was variety-specific. The most significant role in the antioxidative response had glutathione along with the ascorbate-glutathione pathway. Under drought stress, wheat seedlings responded in proline accumulation that was correlated with the P5CS gene expression. Expression of genes encoding dehydrins (DHN5, WZY2) was highly induced under the drought stress in all varieties, while genes encoding transcription factors were differentially regulated. Expression of DREB1 was upregulated under severe drought stress in most varieties, while the expression of WRKY2 was downregulated or revealed control levels. Different mechanisms were shown to contribute to the drought tolerance in different varieties, which was mainly associated with osmotic adjustment and dehydrins expression. Identifying different mechanisms in drought stress response would advance our understanding of the complex strategies contributing to wheat tolerance to drought in the early growth stage and could contribute to variety selection useful for developing new drought-tolerant varieties.