Asset Details
MbrlCatalogueTitleDetail
Do you wish to reserve the book?
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
by
Semenkov, Ivan
, Arnalds, Olafur
, Kusiak, Monika
, Möhler, Ottmar
, Baklanov, Alexander A.
, Thorsteinsson, Throstur
, Barr, Sarah L
, Murray, Benjamin
, Krupskaya, Viktoria
, McQuaid, James B
, Frolov, Denis
, Gasso, Santiago
, O'Neill, Norman T
, Koroleva, Tatyana
, Kavan, Jan
, Ranjbar, Keyvan
, Vimic, Ana Vukovic
, Schepanski, Kerstin
, Sharapova, Anna
, Uppstu, Andreas
, Varga, György
, Lappalainen, Hanna K
, Moroni, Beatrice
, Sofiev, Mikhail
, Thevenet, Frédéric
in
Aerosols
/ Air pollution
/ Analysis
/ Arctic zone
/ Atmospheric models
/ Atmospheric particulates
/ Atmospheric transport
/ Atmospheric transport models
/ Belt conveyors
/ Climate change
/ Climate models
/ Climatic changes
/ Clouds
/ Cold
/ Cryosphere
/ Deposition
/ Deserts
/ Drought
/ Dust
/ Dust deposition
/ Dust emission
/ Dust particles
/ Dust storms
/ Emission analysis
/ Emissions
/ Environmental assessment
/ Environmental Sciences
/ Geosciences (General)
/ Glacier retreat
/ Glacier snow cover
/ Glaciers
/ Heat waves
/ Ice cover
/ Ice environments
/ Land area
/ Latitude
/ Nutrient sources
/ Optical properties
/ Pollutants
/ Probability theory
/ Radiation
/ Snow
/ Snow cover
/ Soil conditions
/ Soil surfaces
/ Soils
/ Spatial analysis
/ Storms
/ Topsoil
/ Transport
/ Weather
/ Weather conditions
2022
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
by
Semenkov, Ivan
, Arnalds, Olafur
, Kusiak, Monika
, Möhler, Ottmar
, Baklanov, Alexander A.
, Thorsteinsson, Throstur
, Barr, Sarah L
, Murray, Benjamin
, Krupskaya, Viktoria
, McQuaid, James B
, Frolov, Denis
, Gasso, Santiago
, O'Neill, Norman T
, Koroleva, Tatyana
, Kavan, Jan
, Ranjbar, Keyvan
, Vimic, Ana Vukovic
, Schepanski, Kerstin
, Sharapova, Anna
, Uppstu, Andreas
, Varga, György
, Lappalainen, Hanna K
, Moroni, Beatrice
, Sofiev, Mikhail
, Thevenet, Frédéric
in
Aerosols
/ Air pollution
/ Analysis
/ Arctic zone
/ Atmospheric models
/ Atmospheric particulates
/ Atmospheric transport
/ Atmospheric transport models
/ Belt conveyors
/ Climate change
/ Climate models
/ Climatic changes
/ Clouds
/ Cold
/ Cryosphere
/ Deposition
/ Deserts
/ Drought
/ Dust
/ Dust deposition
/ Dust emission
/ Dust particles
/ Dust storms
/ Emission analysis
/ Emissions
/ Environmental assessment
/ Environmental Sciences
/ Geosciences (General)
/ Glacier retreat
/ Glacier snow cover
/ Glaciers
/ Heat waves
/ Ice cover
/ Ice environments
/ Land area
/ Latitude
/ Nutrient sources
/ Optical properties
/ Pollutants
/ Probability theory
/ Radiation
/ Snow
/ Snow cover
/ Soil conditions
/ Soil surfaces
/ Soils
/ Spatial analysis
/ Storms
/ Topsoil
/ Transport
/ Weather
/ Weather conditions
2022
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
by
Semenkov, Ivan
, Arnalds, Olafur
, Kusiak, Monika
, Möhler, Ottmar
, Baklanov, Alexander A.
, Thorsteinsson, Throstur
, Barr, Sarah L
, Murray, Benjamin
, Krupskaya, Viktoria
, McQuaid, James B
, Frolov, Denis
, Gasso, Santiago
, O'Neill, Norman T
, Koroleva, Tatyana
, Kavan, Jan
, Ranjbar, Keyvan
, Vimic, Ana Vukovic
, Schepanski, Kerstin
, Sharapova, Anna
, Uppstu, Andreas
, Varga, György
, Lappalainen, Hanna K
, Moroni, Beatrice
, Sofiev, Mikhail
, Thevenet, Frédéric
in
Aerosols
/ Air pollution
/ Analysis
/ Arctic zone
/ Atmospheric models
/ Atmospheric particulates
/ Atmospheric transport
/ Atmospheric transport models
/ Belt conveyors
/ Climate change
/ Climate models
/ Climatic changes
/ Clouds
/ Cold
/ Cryosphere
/ Deposition
/ Deserts
/ Drought
/ Dust
/ Dust deposition
/ Dust emission
/ Dust particles
/ Dust storms
/ Emission analysis
/ Emissions
/ Environmental assessment
/ Environmental Sciences
/ Geosciences (General)
/ Glacier retreat
/ Glacier snow cover
/ Glaciers
/ Heat waves
/ Ice cover
/ Ice environments
/ Land area
/ Latitude
/ Nutrient sources
/ Optical properties
/ Pollutants
/ Probability theory
/ Radiation
/ Snow
/ Snow cover
/ Soil conditions
/ Soil surfaces
/ Soils
/ Spatial analysis
/ Storms
/ Topsoil
/ Transport
/ Weather
/ Weather conditions
2022
Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
Journal Article
Newly Identified Climatically and Environmentally Significant High-Latitude Dust Sources
2022
Request Book From Autostore
and Choose the Collection Method
Overview
Dust particles from high latitudes have a potentially large local, regional, and global significance to climate and the environment as short-lived climate forcers, air pollutants, and nutrient sources. Identifying the locations of local dust sources and their emission, transport, and deposition processes is important for understanding the multiple impacts of high-latitude dust (HLD) on the Earth’s systems. Here, we identify, describe, and quantify the source intensity (SI) values, which show the potential of soil surfaces for dust emission scaled to values 0 to 1 concerning globally best productive sources, using the Global Sand and Dust Storms Source Base Map (G-SDS-SBM). This includes 64 HLD sources in our collection for the northern (Alaska, Canada, Denmark, Greenland, Iceland, Svalbard, Sweden, and Russia) and southern (Antarctica and Patagonia) high latitudes. Activity from most of these HLD sources shows seasonal character. It is estimated that high-latitude land areas with higher (SI ≥ 0.5), very high (SI ≥ 0.7), and the highest potential (SI ≥ 0.9) for dust emission cover > 1 670 000 km2 , > 560 000 km2 , and > 240 000 km2 , respectively. In the Arctic HLD region (≥ 60◦ N), land area with SI ≥ 0.5 is 5.5 % (1 035 059 km2), area with SI ≥ 0.7 is 2.3 % (440 804 km2), and area with SI ≥ 0.9 is 1.1 % (208 701 km2). Minimum SI values in the northern HLD region are about 3 orders of magnitude smaller, indicating that the dust sources of this region greatly depend on weather conditions. Our spatial dust source distribution analysis modeling results showed evidence supporting a northern HLD belt, defined as the area north of 50◦ N, with a “transitional HLD-source area” extending at latitudes 50–58◦ N in Eurasia and 50–55◦ N in Canada and a “cold HLD-source area” including areas north of 60◦ N in Eurasia and north of 58◦ N in Canada, with currently “no dust source” area between the HLD and low-latitude dust (LLD) dust belt, except for British Columbia. Using the global atmospheric transport model SILAM, we estimated that 1.0 % of the global dust emission originated from the high-latitude regions. About 57 % of the dust deposition in snow- and ice-covered Arctic regions was from HLD sources. In the southern HLD region, soil surface conditions are favorable for dust emission during the whole year. Climate change can cause a decrease in the duration of snow cover, retreat of glaciers, and an increase in drought, heatwave intensity, and frequency, leading to the increasing frequency of topsoil conditions favorable for dust emission, which increases the probability of dust storms. Our study provides a step forward to improve the representation of HLD in models and to monitor, quantify, and assess the environmental and climate significance of HLD.
This website uses cookies to ensure you get the best experience on our website.