Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
32 result(s) for "Angulo, Bárbara"
Sort by:
A Comparison of EGFR Mutation Testing Methods in Lung Carcinoma: Direct Sequencing, Real-time PCR and Immunohistochemistry
The objective of this study is to compare two EGFR testing methodologies (a commercial real-time PCR kit and a specific EGFR mutant immunohistochemistry), with direct sequencing and to investigate the limit of detection (LOD) of both PCR-based methods. We identified EGFR mutations in 21 (16%) of the 136 tumours analyzed by direct sequencing. Interestingly, the Therascreen EGFR Mutation Test kit was able to characterize as wild-type one tumour that could not be analyzed by direct sequencing of the PCR product. We then compared the LOD of the kit and that of direct sequencing using the available mutant tumours. The kit was able to detect the presence of a mutation in a 1% dilution of the total DNA in nine of the 18 tumours (50%), which tested positive with the real-time quantitative PCR method. In all cases, EGFR mutation was identified at a dilution of 5%. Where the mutant DNA represented 30% of the total DNA, sequencing was able to detect mutations in 12 out of 19 cases (63%). Additional experiments with genetically defined standards (EGFR ΔE746-A750/+ and EGFR L858R/+) yielded similar results. Immunohistochemistry (IHC) staining with exon 19-specific antibody was seen in eight out of nine cases with E746-A750del detected by direct sequencing. Neither of the two tumours with complex deletions were positive. Of the five L858R-mutated tumours detected by the PCR methods, only two were positive for the exon 21-specific antibody. The specificity was 100% for both antibodies. The LOD of the real-time PCR method was lower than that of direct sequencing. The mutation specific IHC produced excellent specificity.
Elucidating the Role of KRAS, NRAS, and BRAF Mutations and Microsatellite Instability in Colorectal Cancer via Next-Generation Sequencing
Methods: We retrospectively and cross-sectionally reviewed the cases of 648 patients with a histological diagnosis of colon adenocarcinoma. Of these, 166 had partial molecular studies, and 42 cases were selected based on the availability of the genetic markers targeted in this study. We analyzed the frequency of mutations in these genes, as well as their correlation with microsatellite instability (MSI). Results: A high mutation rate was found in the KRAS gene (52.4%). NRAS mutations were less frequent (8.9%), whereas BRAF mutations were observed in 20.8% of cases. This allowed us to identify a patient subgroup with MSI, representing 12.1% of cases. Among the 42 patients analyzed for KRAS, NRAS, BRAF, and MSI mutations, a significant association was observed between KRAS mutations and microsatellite stability, while no association was found between NRAS mutations and MSI. BRAF mutations showed a statistically significant association with MSI (p < 0.05), with the most common mutation being c.1799T > A, p.Val600Glu. The objective of this study is to demonstrate that the NGS-based method for evaluating MSI is rigorously valid compared to the results obtained using IHC and PCR. Conclusions: Comprehensive NGS profiling from the start improves diagnostic efficiency by saving time, tissue, and costs compared to gene-by-gene analysis. It also enables better molecular characterization and facilitates tailored therapeutic strategies, particularly in identifying candidates for targeted therapy and immunotherapy. This approach supports efficient tumor classification based on using KRAS, BRAF, NTRK, ERBB2, and PIK3CA as key markers, along with MSI status. We recommend that, if initial NGS is not feasible, start with KRAS analysis, then test BRAF and MSI if no mutation is found.
The Use of P63 Immunohistochemistry for the Identification of Squamous Cell Carcinoma of the Lung
While some targeted agents should not be used in squamous cell carcinomas (SCCs), other agents might preferably target SCCs. In a previous microarray study, one of the top differentially expressed genes between adenocarcinomas (ACs) and SCCs is P63. It is a well-known marker of squamous differentiation, but surprisingly, its expression is not widely used for this purpose. Our goals in this study were (1) to further confirm our microarray data, (2) to analize the value of P63 immunohistochemistry (IHC) in reducing the number of large cell carcinoma (LCC) diagnoses in surgical specimens, and (3) to investigate the potential of P63 IHC to minimize the proportion of \"carcinoma NOS (not otherwise specified)\" in a prospective series of small tumor samples. With these goals in mind, we studied (1) a tissue-microarray comprising 33 ACs and 99 SCCs on which we performed P63 IHC, (2) a series of 20 surgically resected LCCs studied for P63 and TTF-1 IHC, and (3) a prospective cohort of 66 small thoracic samples, including 32 carcinoma NOS, that were further classified by the result of P63 and TTF-1 IHC. The results in the three independent cohorts were as follows: (1) P63 IHC was differentially expressed in SCCs when compared to ACs (p<0.0001); (2) half of the 20 (50%) LCCs were positive for P63 and were reclassified as SCCs; and (3) all P63 positive cases (34%) were diagnosed as SCCs. P63 IHC is useful for the identification of lung SCCs.
Characterization of flow and transport dynamics in karst aquifers by analyzing tracer test results in conduits and recharge areas (the Egino Massif, Basque Country, Spain): environmental and management implications
Karst aquifers contribute to supplying drinking water to almost a quarter of the world´s population. Their complex dynamics requires specific approaches aimed at recognizing their singularities, analyzing its vulnerability, and ensuring water resources quality. In this paper, the results of processing and modeling five breakthrough tracer curves obtained under different hydrodynamic conditions in the main conduit of Egino karst aquifer (Basque Country, Spain) are analyzed together with those involving pressure injections of the tracer in the saturated zone of the karst massif recharge area. In the conduit, transport is immediate and highly efficient (recovery rates above 84% and dispersion coefficients from 15.04 to 84.35 m2/min); tracer retentions increase as flow rates decrease and no significant contributions to its surroundings are observed. In contrast, tracer transport from the massif recharge area is more complex: after injection at a pressure of 1 MPa, most tracer remains in the surrounding of the injection borehole, retained in a saturated medium of low effective fracture porosity (ϕf = 1.02 × 10−4, assuming a radial divergent flow model); subsequently, the main tracer mobilization to the spring was registered with the first rains, with 0.088 m/min mean velocity and high concentrations per unit mass being injected (Cp/M0 = 0.03 mg/L/kg), which is evidence that the tracer reaches soon the karst conduit network. In any case, a decreasing tracer presence is registered at the injection zone during a hydrological cycle. In both cases, the observed non-linearity of transport processes should be considered in the development of vulnerability approaches, modeling efforts, and mapping. Furthermore, in the case of karst massif recharge areas, as the presence of pollutants may have a significant impact on the springs and persist over time, their management and protection needs must be revised in each specific site. Simultaneously, quality-monitoring programs at the springs must be adapted to the aquifers recognized dynamics.
Comparison of Testing Methods for the Detection of BRAF V600E Mutations in Malignant Melanoma: Pre-Approval Validation Study of the Companion Diagnostic Test for Vemurafenib
The cobas 4800 BRAF V600 Mutation Test is a CE-marked and FDA-approved in vitro diagnostic assay used to select patients with metastatic melanoma for treatment with the selective BRAF inhibitor vemurafenib. We describe the pre-approval validation of this test in two external laboratories. Melanoma specimens were tested for BRAF V600 mutations at two laboratories with the: cobas BRAF Mutation Test; ABI BRAF test; and bidirectional direct sequencing. Positive (PPA) and negative (NPA) percent agreements were determined between the cobas test and the other assays. Specimens with discordant results were tested with massively parallel pyrosequencing (454). DNA blends with 5% mutant alleles were tested to assess detection rates. Invalid results were observed in 8/116 specimens (6·9%) with Sanger, 10/116 (8·6%) with ABI BRAF, and 0/232 (0%) with the cobas BRAF test. PPA was 97·7% for V600E mutation for the cobas BRAF test and Sanger, and NPA was 95·3%. For the cobas BRAF test and ABI BRAF, PPA was 71·9% and NPA 83·7%. For 16 cobas BRAF test-negative/ABI BRAF-positive specimens, 454 sequencing detected no codon 600 mutations in 12 and variant codon 600 mutations in four. For eight cobas BRAF test-positive/ABI BRAF-negative specimens, four were V600E and four V600K by 454 sequencing. Detection rates for 5% mutation blends were 100% for the cobas BRAF test, 33% for Sanger, and 21% for the ABI BRAF. Reproducibility of the cobas BRAF test was 111/116 (96%) between the two sites. It is feasible to evaluate potential companion diagnostic tests in external laboratories simultaneously to the pivotal clinical trial validation. The health authority approved assay had substantially better performance characteristics than the two other methods. The overall success of the cobas BRAF test is a proof of concept for future biomarker development.
A new generation of companion diagnostics: cobas BRAF, KRAS and EGFR mutation detection tests
The cobas® (Roche) portfolio of companion diagnostics in oncology currently has three assays CE-marked for in vitro diagnostics. Two of these (EGFR and BRAF) are also US FDA-approved. These assays detect clinically relevant mutations that are correlated with response (BRAF, EGFR) or lack of response (KRAS) to targeted therapies such as selective mutant BRAF inhibitors in malignant melanoma, tyrosine kinases inhibitor in non-small cell lung cancer and anti-EGFR monoclonal antibodies in colorectal cancer, respectively. All these assays are run on a single platform using DNA extracted from a single 5 µm section of a formalin-fixed paraffin-embedded tissue block. The assays provide an 'end-to-end' solution from extraction of DNA to automated analysis and report on the cobas z 480. The cobas tests have shown robust and reproducible performance, with high sensitivity and specificity and low limit of detection, making them suitable as companion diagnostics for clinical use.
Comparison of molecular testing methods for the detection of EGFR mutations in formalin-fixed paraffin-embedded tissue specimens of non-small cell lung cancer
Aim To conduct a methods correlation study of three different assays for the detection of mutations at EGFR gene in human formalin-fixed paraffin-embedded tumour (FFPET) specimens of non-small cell lung carcinomas (NSCLC). Methods We conducted a 2-site method comparison study of two european conformity (CE) in vitro diagnostic (IVD)-marked assays, the cobas EGFR Mutation Test and the Therascreen EGFR29 Mutation Kit, and 2× bidirectional Sanger sequencing. We blind-tested 124 NSCLC FFPET specimens with all three methods; the cobas test was performed at both sites. Positive (PPA) and negative percent agreements (NPA) were determined for the cobas test versus each of the other two methods. Specimens yielding discordant test results between methods were further tested using quantitative massively parallel pyrosequencing (MPP). Results PPA between cobas and Sanger was 98.8%; NPA was 79.3%. Overall there were seven discordant results. MPP confirmed an exon 19 deletion in two cases and L858R mutation in four cases. PPA between cobas and Therascreen was 98.9% and NPA was 100%. There was one discordant result. Reproducibility of the cobas test between the two sites was 99.2%. Conclusions The invalid rates for the cobas test and Therascreen were lower than Sanger sequencing. The cobas and Therascreen assays showed a high degree of concordance, and both were more sensitive for the detection of exon 19 deletion and L858R mutations than Sanger. The cobas test was highly reproducible between the two testing sites, used the least amount of DNA input and was the only test with automated results reporting.
The Use of P63 Immunohistochemistry for the Identification of Squamous Cell Carcinoma of the Lung
While some targeted agents should not be used in squamous cell carcinomas (SCCs), other agents might preferably target SCCs. In a previous microarray study, one of the top differentially expressed genes between adenocarcinomas (ACs) and SCCs is P63. It is a well-known marker of squamous differentiation, but surprisingly, its expression is not widely used for this purpose. Our goals in this study were (1) to further confirm our microarray data, (2) to analize the value of P63 immunohistochemistry (IHC) in reducing the number of large cell carcinoma (LCC) diagnoses in surgical specimens, and (3) to investigate the potential of P63 IHC to minimize the proportion of \"carcinoma NOS (not otherwise specified)\" in a prospective series of small tumor samples. With these goals in mind, we studied (1) a tissue-microarray comprising 33 ACs and 99 SCCs on which we performed P63 IHC, (2) a series of 20 surgically resected LCCs studied for P63 and TTF-1 IHC, and (3) a prospective cohort of 66 small thoracic samples, including 32 carcinoma NOS, that were further classified by the result of P63 and TTF-1 IHC. The results in the three independent cohorts were as follows: (1) P63 IHC was differentially expressed in SCCs when compared to ACs (p<0.0001); (2) half of the 20 (50%) LCCs were positive for P63 and were reclassified as SCCs; and (3) all P63 positive cases (34%) were diagnosed as SCCs. P63 IHC is useful for the identification of lung SCCs.