Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Arıkan, Süleyman Muhammed"
Sort by:
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Software can be vulnerable to various types of interference. The production of cyber threat intelligence for closed source software requires significant effort, experience, and many manual steps. The objective of this study is to automate the process of producing cyber threat intelligence, focusing on closed source software vulnerabilities. To achieve our goal, we have developed a system called cti-for-css. Deep learning algorithms were used for detection. To simplify data representation and reduce pre-processing workload, the study proposes the function-as-sentence approach. The MLP, OneDNN, LSTM, and Bi-LSTM algorithms were trained using this approach with the SOSP and NDSS18 binary datasets, and their results were compared. The aforementioned datasets contain buffer error vulnerabilities (CWE-119) and resource management error vulnerabilities (CWE-399). Our results are as successful as the studies in the literature. The system achieved the best performance using Bi-LSTM, with F1 score of 82.4%. Additionally, AUC score of 93.0% was acquired, which is the best in the literature. The study concluded by producing cyber threat intelligence using closed source software. Shareable intelligence was produced in an average of 0.1 s, excluding the detection process. Each record, which was represented using our approach, was classified in under 0.32 s on average.