MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system
Journal Article

Automating shareable cyber threat intelligence production for closed source software vulnerabilities: a deep learning based detection system

2024
Request Book From Autostore and Choose the Collection Method
Overview
Software can be vulnerable to various types of interference. The production of cyber threat intelligence for closed source software requires significant effort, experience, and many manual steps. The objective of this study is to automate the process of producing cyber threat intelligence, focusing on closed source software vulnerabilities. To achieve our goal, we have developed a system called cti-for-css. Deep learning algorithms were used for detection. To simplify data representation and reduce pre-processing workload, the study proposes the function-as-sentence approach. The MLP, OneDNN, LSTM, and Bi-LSTM algorithms were trained using this approach with the SOSP and NDSS18 binary datasets, and their results were compared. The aforementioned datasets contain buffer error vulnerabilities (CWE-119) and resource management error vulnerabilities (CWE-399). Our results are as successful as the studies in the literature. The system achieved the best performance using Bi-LSTM, with F1 score of 82.4%. Additionally, AUC score of 93.0% was acquired, which is the best in the literature. The study concluded by producing cyber threat intelligence using closed source software. Shareable intelligence was produced in an average of 0.1 s, excluding the detection process. Each record, which was represented using our approach, was classified in under 0.32 s on average.