Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
60 result(s) for "Aubert, John David"
Sort by:
A prevalent and culturable microbiota links ecological balance to clinical stability of the human lung after transplantation
There is accumulating evidence that the lower airway microbiota impacts lung health. However, the link between microbial community composition and lung homeostasis remains elusive. We combine amplicon sequencing and bacterial culturing to characterize the viable bacterial community in 234 longitudinal bronchoalveolar lavage samples from 64 lung transplant recipients and establish links to viral loads, host gene expression, lung function, and transplant health. We find that the lung microbiota post-transplant can be categorized into four distinct compositional states, ‘pneumotypes’. The predominant ‘balanced’ pneumotype is characterized by a diverse bacterial community with moderate viral loads, and host gene expression profiles suggesting immune tolerance. The other three pneumotypes are characterized by being either microbiota-depleted, or dominated by potential pathogens, and are linked to increased immune activity, lower respiratory function, and increased risks of infection and rejection. Collectively, our findings establish a link between the lung microbial ecosystem, human lung function, and clinical stability post-transplant. Here, the authors combine 16 S rRNA sequencing, culture and bioinformatics to profile the microbiome in 234 serial bronchoalveolar lavage samples from 64 lung transplant recipients collected over 49-months and identify distinct compositional states, termed pneumotypes, linked to current health status, and establish a collection of primary lung bacterial isolates, LuMiCol.
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
In lung transplant recipients, long-term graft survival relies on the control of inflammation and tissue remodeling to maintain graft functionality and avoid chronic lung allograft dysfunction. Although advances in clinical practice have improved transplant success, the mechanisms by which the balance between inflammation and remodeling is maintained are largely unknown. To assess whether host-microbe interactions in the transplanted lung determine the immunologic tone of the airways, and consequently could impact graft survival. Microbiota DNA and host total RNA were isolated from 203 bronchoalveolar lavages obtained from 112 patients post-lung transplantation. Microbiota composition was determined using 16S ribosomal RNA analysis, and expression of a set of genes involved in prototypic macrophage functions was quantified using real-time quantitative polymerase chain reaction. We show that the characteristics of the pulmonary microbiota aligned with distinct innate cell gene expression profiles. Although a nonpolarized activation was associated with bacterial communities consisting of a balance between proinflammatory (e.g., Staphylococcus and Pseudomonas) and low stimulatory (e.g., Prevotella and Streptococcus) bacteria, \"inflammatory\" and \"remodeling\" profiles were linked to bacterial dysbiosis. Mechanistic assays provided direct evidence that bacterial dysbiosis could lead to inflammatory or remodeling profiles in macrophages, whereas a balanced microbial community maintained homeostasis. The crosstalk between bacterial communities and innate immune cells potentially determines the function of the transplanted lung offering novel pathways for intervention strategies.
Incidence and Risk Factors of Abdominal Complications After Lung Transplantation
Background Due to the underlying diseases and the need for immunosuppression, patients after lung transplantation are particularly at risk for gastrointestinal (GI) complications that may negatively influence long-term outcome. The present study assessed the incidences and impact of GI complications after lung transplantation and aimed to identify risk factors. Methods Retrospective analysis of all 227 consecutively performed single- and double-lung transplantations at the University hospitals of Lausanne and Geneva was performed between January 1993 and December 2010. Logistic regressions were used to test the effect of potentially influencing variables on the binary outcomes overall, severe, and surgery-requiring complications, followed by a multiple logistic regression model. Results Final analysis included 205 patients for the purpose of the present study, and 22 patients were excluded due to re-transplantation, multiorgan transplantation, or incomplete datasets. GI complications were observed in 127 patients (62 %). Gastro-esophageal reflux disease was the most commonly observed complication (22.9 %), followed by inflammatory or infectious colitis (20.5 %) and gastroparesis (10.7 %). Major GI complications (Dindo/Clavien III–V) were observed in 83 (40.5 %) patients and were fatal in 4 patients (2.0 %). Multivariate analysis identified double-lung transplantation ( p  = 0.012) and early (1993–1998) transplantation period ( p  = 0.008) as independent risk factors for developing major GI complications. Forty-three (21 %) patients required surgery such as colectomy, cholecystectomy, and fundoplication in 6.8, 6.3, and 3.9 % of the patients, respectively. Multivariate analysis identified Charlson comorbidity index of ≥3 as an independent risk factor for developing GI complications requiring surgery ( p  = 0.015). Conclusion GI complications after lung transplantation are common. Outcome was rather encouraging in the setting of our transplant center.
Pressure Overload and Right Ventricular Failure: From Pathophysiology to Treatment
Right ventricular failure (RVF) is often caused by increased afterload and disrupted coupling between the right ventricle (RV) and the pulmonary arteries (PAs). After a phase of adaptive hypertrophy, pressure-overloaded RVs evolve towards maladaptive hypertrophy and finally ventricular dilatation, with reduced stroke volume and systemic congestion. In this article, we review the concept of RV-PA coupling, which depicts the interaction between RV contractility and afterload, as well as the invasive and non-invasive techniques for its assessment. The current principles of RVF management based on pathophysiology and underlying etiology are subsequently discussed. Treatment strategies remain a challenge and range from fluid management and afterload reduction in moderate RVF to vasopressor therapy, inotropic support and, occasionally, mechanical circulatory support in severe RVF.
Chronic Rhinoviral Infection in Lung Transplant Recipients
Lung transplant recipients are particularly at risk of complications from rhinovirus, the most frequent respiratory virus circulating in the community. To determine whether lung transplant recipients can be chronically infected by rhinovirus and the potential clinical impact. We first identified an index case, in which rhinovirus was isolated repeatedly, and conducted detailed molecular analysis to determine whether this was related to a unique strain or to re-infection episodes. Transbronchial biopsies were used to assess the presence of rhinovirus in the lung parenchyma. The incidence of chronic rhinoviral infections and potential clinical impact was assessed prospectively in a cohort of 68 lung transplant recipients during 19 mo by screening of bronchoalveolar lavages. We describe 3 lung transplant recipients with graft dysfunctions in whom rhinovirus was identified by reverse transcriptase-polymerase chain reaction in upper and lower respiratory specimens over a 12-mo period. In two cases, rhinovirus was repeatedly isolated in culture. The persistence of a unique strain in each case was confirmed by sequence analysis of the 5'NCR and VP1 gene. In the index case, rhinovirus was detected in the lower respiratory parenchyma. In the cohort of lung transplant recipients, rhinoviral infections were documented in bronchoalveolar lavage specimens of 10 recipients, and 2 presented with a persistent infection. Rhinoviral infection can be persistent in lung transplant recipients with graft dysfunction, and the virus can be detected in the lung parenchyma. Given the potential clinical impact, chronic rhinoviral infection needs to be considered in lung transplant recipients.
Impact of SARS-CoV-2-Related Hygiene Measures on Community-Acquired Respiratory Virus Infections in Lung Transplant Recipients in Switzerland
Background and Objectives: Community-acquired respiratory virus (CARV) infections pose a serious risk for lung transplant recipients (LTR) as they are prone to severe complications. When the COVID-19 pandemic hit Switzerland in 2020, the government implemented hygiene measures for the general population. We investigated the impact of these measures on the transmission of CARV in lung transplant recipients in Switzerland. Materials and Methods: In this multicenter, retrospective study of lung transplant recipients, we investigated two time periods: the year before the COVID-19 pandemic (1 March 2019–29 February 2020) and the first year of the pandemic (1 March 2020–28 February 2021). Data were mainly collected from the Swiss Transplant Cohort Study (STCS) database. Descriptive statistics were used to analyze the results. Results: Data from 221 Swiss lung transplant cohort patients were evaluated. In the year before the COVID-19 pandemic, 157 infections were diagnosed compared to 71 infections in the first year of the pandemic (decline of 54%, p < 0.001). Influenza virus infections alone showed a remarkable decrease from 17 infections before COVID-19 to 2 infections after the beginning of the pandemic. No significant difference was found in testing behavior; 803 vs. 925 tests were obtained by two of the three centers during the respective periods. Conclusions: We observed a significant decline in CARV infections in the Swiss lung transplant cohort during the first year of the COVID-19 pandemic. These results suggest a relevant impact of hygiene measures when implemented in the population due to the COVID-19 pandemic on the incidence of CARV infections.
Risk Stratification in Pulmonary Arterial Hypertension, Update and Perspectives
Risk stratification in pulmonary arterial hypertension (PAH) is crucial in assessing patient prognosis. It serves a prominent role in everyday patient care and can be determined using several validated risk assessment scores worldwide. The recently published 2022 European Society of Cardiology (ESC)/European Respiratory Society (ERS) guidelines underline the importance of risk stratification not only at baseline but also during follow-up. Achieving a low-risk status has now become the therapeutic goal, emphasising the importance of personalised therapy. The application of these guidelines is also important in determining the timing for lung transplantation referral. In this review, we summarise the most relevant prognostic factors of PAH as well as the parameters used in PAH risk scores and their evolution in the guidelines over the last decade. Finally, we describe the central role that risk stratification plays in the current guidelines not only in European countries but also in Asian countries.
Rhinovirus Genome Variation during Chronic Upper and Lower Respiratory Tract Infections
Routine screening of lung transplant recipients and hospital patients for respiratory virus infections allowed to identify human rhinovirus (HRV) in the upper and lower respiratory tracts, including immunocompromised hosts chronically infected with the same strain over weeks or months. Phylogenetic analysis of 144 HRV-positive samples showed no apparent correlation between a given viral genotype or species and their ability to invade the lower respiratory tract or lead to protracted infection. By contrast, protracted infections were found almost exclusively in immunocompromised patients, thus suggesting that host factors rather than the virus genotype modulate disease outcome, in particular the immune response. Complete genome sequencing of five chronic cases to study rhinovirus genome adaptation showed that the calculated mutation frequency was in the range observed during acute human infections. Analysis of mutation hot spot regions between specimens collected at different times or in different body sites revealed that non-synonymous changes were mostly concentrated in the viral capsid genes VP1, VP2 and VP3, independent of the HRV type. In an immunosuppressed lung transplant recipient infected with the same HRV strain for more than two years, both classical and ultra-deep sequencing of samples collected at different time points in the upper and lower respiratory tracts showed that these virus populations were phylogenetically indistinguishable over the course of infection, except for the last month. Specific signatures were found in the last two lower respiratory tract populations, including changes in the 5'UTR polypyrimidine tract and the VP2 immunogenic site 2. These results highlight for the first time the ability of a given rhinovirus to evolve in the course of a natural infection in immunocompromised patients and complement data obtained from previous experimental inoculation studies in immunocompetent volunteers.
Disease characteristics and clinical outcome over two decades from the Swiss pulmonary hypertension registry
Pulmonary hypertension (PH), especially pulmonary arterial and chronic thromboembolic pulmonary hypertension (PAH/CTEPH), are rare and progressive conditions. Despite recent advances in treatment and prognosis, PH is still associated with impaired quality of life and survival. Long‐term PH‐registry data provide information on the changing PH‐epidemiology and may help to direct resources to patient's needs. This retrospective analysis of the Swiss Pulmonary Hypertension Registry includes patients newly diagnosed with PH (mainly PAH/CTEPH) registered from January 2001 to June 2019 at 13 Swiss hospitals. Patient characteristics (age, body mass index, gender, diagnosis), hemodynamics at baseline, treatment, days of follow‐up, and events (death, transplantation, pulmonary endarterectomy, or loss to follow‐up) at last visit were analyzed. Patients were stratified into four time periods according to their date of diagnosis. Survival was analyzed overall and separately for PAH/CTEPH and time periods. 1427 PH patients were included (thereof 560 PAH, 383 CTEPH). Over the years, age at baseline (mean ± SD) significantly increased from 59 ± 14 years in 2001–2005 to 66 ± 14 years in 2016–2019 (p < 0.001) while the gender distribution tended toward equality. Mean pulmonary artery pressure and pulmonary vascular resistance significantly decreased over time (from 46 ± 15 to 41 ± 11 mmHg, respectively, 9 ± 5 to 7 ± 4 WU, p < 0.001). Three‐year survival substantially increased over consecutive periods from 69% to 91% (for PAH 63%–95%, for CTEPH 86%–93%) and was poorer in PAH than CTEPH independently of time period (p < 0.001). Most patients were treated with mono‐ or combination therapy and an increasing number of CTEPH underwent pulmonary endarterectomy (40% 2016–2019 vs. 15% 2001–2005). This long‐term PH registry reveals that over two decades of observation, newly diagnosed patients are older, less predominantly female, have less impaired hemodynamics and a better survival.
Radiological findings of complications after lung transplantation
Complications following lung transplantation may impede allograft function and threaten patient survival. The five main complications after lung transplantation are primary graft dysfunction, post-surgical complications, alloimmune responses, infections, and malignancy. Primary graft dysfunction, a transient ischemic/reperfusion injury, appears as a pulmonary edema in almost every patient during the first three days post-surgery. Post-surgical dysfunction could be depicted on computed tomography (CT), such as bronchial anastomosis dehiscence, bronchial stenosis and bronchomalacia, pulmonary artery stenosis, and size mismatch. Alloimmune responses represent acute rejection or chronic lung allograft dysfunction (CLAD). CLAD has three different forms (bronchiolitis obliterans syndrome, restrictive allograft syndrome, acute fibrinoid organizing pneumonia) that could be differentiated on CT. Infections are different depending on their time of occurrence. The first post-operative month is mostly associated with bacterial and fungal pathogens. From the second to sixth months, viral pneumonias and fungal and parasitic opportunistic infections are more frequent. Different patterns according to the type of infection exist on CT. Malignancy should be depicted and corresponded principally to post-transplantation lymphoproliferative disease (PTLD). In this review, we describe specific CT signs of these five main lung transplantation complications and their time of occurrence to improve diagnosis, follow-up, medical management, and to correlate these findings with pathology results.Key Points• The five main complications are primary graft dysfunction, surgical, alloimmune, infectious, and malignancy complications.• CT identifies anomalies in the setting of unspecific symptoms of lung transplantation complications.• Knowledge of the specific CT signs can allow a prompt diagnosis.• CT signs maximize the yield of bronchoscopy, transbronchial biopsy, and bronchoalveolar lavage.• Radiopathological correlation helps to understand CT signs after lung transplantation complications.