MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation
Journal Article

Airway Microbiota Determines Innate Cell Inflammatory or Tissue Remodeling Profiles in Lung Transplantation

2016
Request Book From Autostore and Choose the Collection Method
Overview
In lung transplant recipients, long-term graft survival relies on the control of inflammation and tissue remodeling to maintain graft functionality and avoid chronic lung allograft dysfunction. Although advances in clinical practice have improved transplant success, the mechanisms by which the balance between inflammation and remodeling is maintained are largely unknown. To assess whether host-microbe interactions in the transplanted lung determine the immunologic tone of the airways, and consequently could impact graft survival. Microbiota DNA and host total RNA were isolated from 203 bronchoalveolar lavages obtained from 112 patients post-lung transplantation. Microbiota composition was determined using 16S ribosomal RNA analysis, and expression of a set of genes involved in prototypic macrophage functions was quantified using real-time quantitative polymerase chain reaction. We show that the characteristics of the pulmonary microbiota aligned with distinct innate cell gene expression profiles. Although a nonpolarized activation was associated with bacterial communities consisting of a balance between proinflammatory (e.g., Staphylococcus and Pseudomonas) and low stimulatory (e.g., Prevotella and Streptococcus) bacteria, \"inflammatory\" and \"remodeling\" profiles were linked to bacterial dysbiosis. Mechanistic assays provided direct evidence that bacterial dysbiosis could lead to inflammatory or remodeling profiles in macrophages, whereas a balanced microbial community maintained homeostasis. The crosstalk between bacterial communities and innate immune cells potentially determines the function of the transplanted lung offering novel pathways for intervention strategies.