Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
19
result(s) for
"Börger Verena"
Sort by:
Small extracellular vesicles obtained from hypoxic mesenchymal stromal cells have unique characteristics that promote cerebral angiogenesis, brain remodeling and neurological recovery after focal cerebral ischemia in mice
2021
Obtained from the right cell-type, mesenchymal stromal cell (MSC)-derived small extracellular vesicles (sEVs) promote stroke recovery. Within this process, microvascular remodeling plays a central role. Herein, we evaluated the effects of MSC-sEVs on the proliferation, migration, and tube formation of human cerebral microvascular endothelial cells (hCMEC/D3) in vitro and on post-ischemic angiogenesis, brain remodeling and neurological recovery after middle cerebral artery occlusion (MCAO) in mice. In vitro, sEVs obtained from hypoxic (1% O2), but not ‘normoxic’ (21% O2) MSCs dose-dependently promoted endothelial proliferation, migration, and tube formation and increased post-ischemic endothelial survival. sEVs from hypoxic MSCs regulated a distinct set of miRNAs in hCMEC/D3 cells previously linked to angiogenesis, three being upregulated (miR-126-3p, miR-140-5p, let-7c-5p) and three downregulated (miR-186-5p, miR-370-3p, miR-409-3p). LC/MS–MS revealed 52 proteins differentially abundant in sEVs from hypoxic and ‘normoxic’ MSCs. 19 proteins were enriched (among them proteins involved in extracellular matrix–receptor interaction, focal adhesion, leukocyte transendothelial migration, protein digestion, and absorption), and 33 proteins reduced (among them proteins associated with metabolic pathways, extracellular matrix–receptor interaction, focal adhesion, and actin cytoskeleton) in hypoxic MSC-sEVs. Post-MCAO, sEVs from hypoxic MSCs increased microvascular length and branching point density in previously ischemic tissue assessed by 3D light sheet microscopy over up to 56 days, reduced delayed neuronal degeneration and brain atrophy, and enhanced neurological recovery. sEV-induced angiogenesis in vivo depended on the presence of polymorphonuclear neutrophils. In neutrophil-depleted mice, MSC-sEVs did not influence microvascular remodeling. sEVs from hypoxic MSCs have distinct angiogenic properties. Hypoxic preconditioning enhances the restorative effects of MSC-sEVs.
Journal Article
Mesenchymal Stromal Cell-Derived Extracellular Vesicles Reduce Neuroinflammation, Promote Neural Cell Proliferation and Improve Oligodendrocyte Maturation in Neonatal Hypoxic-Ischemic Brain Injury
2020
Background: Neonatal encephalopathy caused by hypoxia-ischemia (HI) is a major cause of childhood mortality and disability. Stem cell-based regenerative therapies seem promising to prevent long-term neurological deficits. Our previous work in neonatal HI revealed an unexpected interaction between mesenchymal stem/stromal cells (MSCs) and the brains' microenvironment leading to an altered therapeutic efficiency. MSCs are supposed to mediate most of their therapeutic effects in a paracrine mode via extracellular vesicles (EVs), which might be an alternative to cell therapy. In the present study, we investigated the impact of MSC-EVs on neonatal HI-induced brain injury. Methods: Nine-day-old C57BL/6 mice were exposed to HI through ligation of the right common carotid artery followed by 1 h hypoxia (10% oxygen). MSC-EVs were injected intraperitoneally 1, 3, and 5 days after HI. One week after HI, brain injury was evaluated by regional neuropathological scoring, atrophy measurements and immunohistochemistry to assess effects on neuronal, oligodendrocyte and vessel densities, proliferation, oligodendrocyte maturation, myelination, astro-, and microglia activation. Immunohistochemistry analyses were complemented by mRNA expression analyses for a broad set of M1/M2- and A1/A2-associated molecules and neural growth factors. Results: While total neuropathological scores and tissue atrophy were not changed, MSC-EVs significantly protected from HI-induced striatal tissue loss and decreased micro- and astroglia activation. MSC-EVs lead to a significant downregulation of the pro-inflammatory cytokine TNFa, accompanied by a significant upregulation of the M2 marker YM-1 and the anti-inflammatory cytokine TGFb. MSC-EVs significantly decreased astrocytic expression of the A1 marker C3, concomitant with an increased expression of neural growth factors (i.e., BDNF, VEGF, and EGF). These alterations were associated with an increased neuronal and vessel density, coinciding with a significant increase of proliferating cells in the neurogenic sub-ventricular zone juxtaposed to the striatum. MSC-EV-mediated neuroprotection went along with a significant improvement of oligodendrocyte maturation and myelination. Conclusion: The present study demonstrates that MSC-EVs mediate anti-inflammatory effects, promote regenerative responses and improve key developmental processes in the injured neonatal brain. The present results suggest different cellular target mechanisms of MSC-EVs, preventing secondary HI-induced brain injury. MSC-EV treatment may be a promising alternative to risk-associated cell therapies in neonatal brain injury.
Journal Article
Mesenchymal stromal cell-derived small extracellular vesicles promote neurological recovery and brain remodeling after distal middle cerebral artery occlusion in aged rats
2022
Small extracellular vesicles (sEVs) obtained from mesenchymal stromal cells (MSCs) promote neurological recovery after middle cerebral artery occlusion (MCAO) in young rodents. Ischemic stroke mainly affects aged humans. MSC-sEV effects on stroke recovery in aged rodents had not been assessed. In a head-to-head comparison, we exposed young (4–5 months) and aged (19–20 months) male Sprague–Dawley rats to permanent distal MCAO. At 24 h, 3 and 7 days post-stroke, vehicle or MSC-sEVs (2 × 10
6
or 2 × 10
7
MSC equivalents/kg) were intravenously administered. Neurological deficits, ischemic injury, brain inflammatory responses, post-ischemic angiogenesis, and endogenous neurogenesis were evaluated over 28 days. Post-MCAO, aged vehicle-treated rats exhibited more severe motor-coordination deficits evaluated by rotating pole and cylinder tests and larger brain infarcts than young vehicle-treated rats. Although infarct volume was not influenced by MSC-sEVs, sEVs at both doses effectively reduced motor-coordination deficits in young and aged rats. Brain macrophage infiltrates in periinfarct tissue, which were evaluated as marker of a recovery-aversive inflammatory environment, were significantly stronger in aged than young vehicle-treated rats. sEVs reduced brain macrophage infiltrates in aged, but not young rats. The tolerogenic shift in immune balance paved the way for structural brain tissue remodeling. Hence, sEVs at both doses increased periinfarct angiogenesis evaluated by CD31/BrdU immunohistochemistry in young and aged rats, and low-dose sEVs increased neurogenesis in the subventricular zone examined by DCX/BrdU immunohistochemistry. Our study provides robust evidence that MSC-sEVs promote functional neurological recovery and brain tissue remodeling in aged rats post-stroke. This study encourages further proof-of-concept studies in clinic-relevant stroke settings.
Journal Article
Precipitation with polyethylene glycol followed by washing and pelleting by ultracentrifugation enriches extracellular vesicles from tissue culture supernatants in small and large scales
by
Giebel, Bernd
,
Ruesing, Johannes
,
Meyer, Helmut E.
in
Biomarkers
,
Body fluids
,
Brain research
2018
Extracellular vesicles (EVs) provide a complex means of intercellular signalling between cells at local and distant sites, both within and between different organs. According to their cell-type specific signatures, EVs can function as a novel class of biomarkers for a variety of diseases, and can be used as drug-delivery vehicles. Furthermore, EVs from certain cell types exert beneficial effects in regenerative medicine and for immune modulation. Several techniques are available to harvest EVs from various body fluids or cell culture supernatants. Classically, differential centrifugation, density gradient centrifugation, size-exclusion chromatography and immunocapturing-based methods are used to harvest EVs from EV-containing liquids. Owing to limitations in the scalability of any of these methods, we designed and optimised a polyethylene glycol (PEG)-based precipitation method to enrich EVs from cell culture supernatants. We demonstrate the reproducibility and scalability of this method and compared its efficacy with more classical EV-harvesting methods. We show that washing of the PEG pellet and the re-precipitation by ultracentrifugation remove a huge proportion of PEG co-precipitated molecules such as bovine serum albumine (BSA). However, supported by the results of the size exclusion chromatography, which revealed a higher purity in terms of particles per milligram protein of the obtained EV samples, PEG-prepared EV samples most likely still contain a certain percentage of other non-EV associated molecules. Since PEG-enriched EVs revealed the same therapeutic activity in an ischemic stroke model than corresponding cells, it is unlikely that such co-purified molecules negatively affect the functional properties of obtained EV samples. In summary, maybe not being the purification method of choice if molecular profiling of pure EV samples is intended, the optimised PEG protocol is a scalable and reproducible method, which can easily be adopted by laboratories equipped with an ultracentrifuge to enrich for functional active EVs.
Journal Article
Immunomodulatory potential of mesenchymal stromal cell-derived extracellular vesicles in chondrocyte inflammation
2023
Osteoarthritis (OA) affects a large percentage of the population worldwide. Current surgical and nonsurgical concepts for treating OA only result in symptom-modifying effects. However, there is no disease-modifying therapy available. Extracellular vesicles released by mesenchymal stem/stromal cells (MSC-EV) are promising agents to positively influence joint homeostasis in the osteoarthritic surroundings. This pilot study aimed to investigate the effect of characterized MSC-EVs on chondrogenesis in a 3D chondrocyte inflammation model with the pro-inflammatory cytokine TNFα.
Bovine articular chondrocytes were expanded and transferred into pellet culture at passage 3. TNFα, human MSC-EV preparations (MSC-EV batches 41.5-EV
and 84-EV
), EVs from human platelet lysate (hPL
-EV), or the combination of TNFα and EVs were supplemented. To assess the effect of MSC-EVs in the chondrocyte inflammation model after 14 days, DNA, glycosaminoglycan (GAG), total collagen, IL-6, and NO release were quantified, and gene expression of anabolic (COL-II, aggrecan, COMP, and PRG-4), catabolic (MMP-3, MMP-13, ADAMTS-4 and ADAMTS-5), dedifferentiation (COL-I), hypertrophy (COL-X, VEGF), and inflammatory (IL-8) markers were analyzed; histological evaluation was performed using safranin O/Fast Green staining and immunohistochemistry of COL I and II. For statistical evaluation, nonparametric tests were chosen with a significance level of p < 0.05.
TNFα supplementation resulted in catabolic stimulation with increased levels of NO and IL-6, upregulation of catabolic gene expression, and downregulation of anabolic markers. These findings were supported by a decrease in matrix differentiation (COL-II). Supplementation of EVs resulted in an upregulation of the chondrogenic marker PRG-4. All MSC-EV preparations significantly increased GAG retention per pellet. In contrast, catabolic markers and IL-8 expression were upregulated by 41.5-EV
. Regarding protein levels, IL-6 and NO release were increased by 41.5-EV
. Histologic and immunohistochemical evaluations indicated a higher differentiation potential of chondrocytes treated with 84-EV
.
MSC-EVs can positively influence chondrocyte matrix production in pro-inflammatory surroundings, but can also stimulate inflammation. In this study MSC-EV 41.5-EV
supplementation increased chondrocyte inflammation, whereas MSC-84-EV
supplementation resulted a higher chondrogenic potential of chondrocytes in 3D pellet culture. In summary, the selected MSC-EVs exhibited promising chondrogenic effects indicating their significant potential for the treatment of OA; however, the functional heterogeneity in MSC-EV preparations has to be solved.
Journal Article
Cell culture‐derived extracellular vesicles: Considerations for reporting cell culturing parameters
by
Gimona, Mario
,
Mathivanan, Suresh
,
Zhu, Dandan
in
Cell culture
,
cell culture‐conditioned medium
,
Cell growth
2023
Cell culture‐conditioned medium (CCM) is a valuable source of extracellular vesicles (EVs) for basic scientific, therapeutic and diagnostic applications. Cell culturing parameters affect the biochemical composition, release and possibly the function of CCM‐derived EVs (CCM‐EV). The CCM‐EV task force of the Rigor and Standardization Subcommittee of the International Society for Extracellular Vesicles aims to identify relevant cell culturing parameters, describe their effects based on current knowledge, recommend reporting parameters and identify outstanding questions. While some recommendations are valid for all cell types, cell‐specific recommendations may need to be established for non‐mammalian sources, such as bacteria, yeast and plant cells. Current progress towards these goals is summarized in this perspective paper, along with a checklist to facilitate transparent reporting of cell culturing parameters to improve the reproducibility of CCM‐EV research.
Journal Article
The Employment of the Surface Plasmon Resonance (SPR) Microscopy Sensor for the Detection of Individual Extracellular Vesicles and Non-Biological Nanoparticles
2023
A wide-field surface plasmon resonance (SPR) microscopy sensor employs the surface plasmon resonance phenomenon to detect individual biological and non-biological nanoparticles. This sensor enables the detection, sizing, and quantification of biological nanoparticles (bioNPs), such as extracellular vesicles (EVs), viruses, and virus-like particles. The selectivity of bioNP detection does not require biological particle labeling, and it is achieved via the functionalization of the gold sensor surface by target-bioNP-specific antibodies. In the current work, we demonstrate the ability of SPR microscopy sensors to detect, simultaneously, silica NPs that differ by four times in size. Employed silica particles are close in their refractive index to bioNPs. The literature reports the ability of SPR microscopy sensors to detect the binding of lymphocytes (around 10 μm objects) to the sensor surface. Taken together, our findings and the results reported in the literature indicate the power of SPR microscopy sensors to detect bioNPs that differ by at least two orders in size. Modifications of the optical sensor scheme, such as mounting a concave lens, help to achieve homogeneous illumination of a gold sensor chip surface. In the current work, we also characterize the improved magnification factor of the modified SPR instrument. We evaluate the effectiveness of the modified and the primary version of the SPR microscopy sensors in detecting EVs isolated via different approaches. In addition, we demonstrate the possibility of employing translation and rotation stepper motors for precise adjustments of the positions of sensor optical elements—prism and objective—in the primary version of the SPR microscopy sensor instrument, and we present an algorithm to establish effective sensor–actuator coupling.
Journal Article
Anti-Inflammatory Mesenchymal Stromal Cell-Derived Extracellular Vesicles Improve Pathology in Niemann–Pick Type C Disease
2021
Niemann–Pick type C (NPC) disease is a rare neurovisceral lipid storage disease with progressive neurodegeneration, leading to premature death. The disease is caused by loss-of-function mutations either in the NPC1 or NPC2 gene which results in lipid accumulation in the late endosomes and lysosomes. The involved disease mechanisms are still incompletely understood, making the design of a rational treatment very difficult. Since the disease is characterized by peripheral inflammation and neuroinflammation and it is shown that extracellular vesicles (EVs) obtained from mesenchymal stromal cells (MSCs) provide immunomodulatory capacities, we tested the potential of MSC-EV preparations to alter NPC1 disease pathology. Here, we show that the administration of an MSC-EV preparation with in vitro and in vivo confirmed immune modulatory capabilities is able to reduce the inflammatory state of peripheral organs and different brain regions of NPC1-diseased mice almost to normal levels. Moreover, a reduction of foamy cells in different peripheral organs was observed upon MSC-EV treatment of NPC1−/− mice. Lastly, the treatment was able to decrease microgliosis and astrogliosis, typical features of NPC1 patients that lead to neurodegeneration. Altogether, our results reveal the therapeutic potential of MSC-EVs as treatment for the genetic neurovisceral lipid storage disease NPC, thereby counteracting both central and peripheral features.
Journal Article
Mesenchymal Stem/Stromal Cell-Derived Extracellular Vesicles and Their Potential as Novel Immunomodulatory Therapeutic Agents
by
Ferrer-Tur, Rita
,
Giebel, Bernd
,
Stambouli, Oumaima
in
Animals
,
Extracellular Vesicles - immunology
,
Extracellular Vesicles - transplantation
2017
Extracellular vesicles (EVs), such as exosomes and microvesicles, have been identified as mediators of a newly-discovered intercellular communication system. They are essential signaling mediators in various physiological and pathophysiological processes. Depending on their origin, they fulfill different functions. EVs of mesenchymal stem/stromal cells (MSCs) have been found to promote comparable therapeutic activities as MSCs themselves. In a variety of in vivo models, it has been observed that they suppress pro-inflammatory processes and reduce oxidative stress and fibrosis. By switching pro-inflammatory into tolerogenic immune responses, MSC-EVs very likely promote tissue regeneration by creating a pro-regenerative environment allowing endogenous stem and progenitor cells to successfully repair affected tissues. Accordingly, MSC-EVs provide a novel, very promising therapeutic agent, which has already been successfully applied to humans. However, the MSC-EV production process has not been standardized, yet. Indeed, a collection of different protocols has been used for the MSC-EV production, characterization and application. By focusing on kidney, heart, liver and brain injuries, we have reviewed the major outcomes of published MSC-EV in vivo studies.
Journal Article
Hepatocyte growth factor-mediated attraction of mesenchymal stem cells for apoptotic neuronal and cardiomyocytic cells
by
Vogel, Sebastian
,
Trapp, Thorsten
,
Börger, Verena
in
Apoptosis
,
Biochemistry
,
Biomedical and Life Sciences
2010
Human bone marrow-derived mesenchymal stem cells (MSC) home to injured tissues and have regenerative capacity. In this study, we have investigated in vitro the influence of apoptotic and necrotic cell death, thus distinct types of tissue damage, on MSC migration. Concordant with an increased overall motility, MSC migrated towards apoptotic, but not vital or necrotic neuronal and cardiac cells. Hepatocyte growth factor (HGF) was expressed by the apoptotic cells only. MSC, in contrast, revealed expression of the HGF-receptor, c-Met. Blocking HGF bioactivity resulted in significant reduction of MSC migration. Moreover, recombinant HGF attracted MSC in a dose-dependent manner. Thus, apoptosis initiates chemoattraction of MSC via the HGF/c-Met axis, thereby linking tissue damage to the recruitment of cells with regenerative potential.
Journal Article