Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
180
result(s) for
"Bacic, Antony"
Sort by:
Determining the polysaccharide composition of plant cell walls
by
Bacic, Antony
,
Pettolino, Filomena A
,
Fincher, Geoffrey B
in
101/58
,
631/1647/2196
,
631/449/448/1365
2012
The plant cell wall is a chemically complex structure composed mostly of polysaccharides. Detailed analyses of these cell wall polysaccharides are essential for our understanding of plant development and for our use of plant biomass (largely wall material) in the food, agriculture, fabric, timber, biofuel and biocomposite industries. We present analytical techniques not only to define the fine chemical structures of individual cell wall polysaccharides but also to estimate the overall polysaccharide composition of cell wall preparations. The procedure covers the preparation of cell walls, together with gas chromatography–mass spectrometry (GC-MS)-based methods, for both the analysis of monosaccharides as their volatile alditol acetate derivatives and for methylation analysis to determine linkage positions between monosaccharide residues as their volatile partially methylated alditol acetate derivatives. Analysis time will vary depending on both the method used and the tissue type, and ranges from 2 d for a simple neutral sugar composition to 2 weeks for a carboxyl reduction/methylation linkage analysis.
Journal Article
Preparation of plant cells for transmission electron microscopy to optimize immunogold labeling of carbohydrate and protein epitopes
2012
Despite the remarkable advances in electron microscopy, the difficulty in preserving the ultrastructural details of many plant cells is the major limitation to exploiting the full potential of this technology. The very nature of plant cells, including their hydrophobic surfaces, rigid cell walls and large vacuoles, make them recalcitrant to the efficient exchange of reagents that are crucial to preserving their fine structure. Achieving ultrastructural preservation while protecting the antigenicity of molecular epitopes has proven difficult. Here we describe two methods that provide good ultrastructural detail in plant cells while preserving the binding capacity of carbohydrate and protein epitopes. The first is a traditional, chemical-based protocol used to prepare developing grass (cereal) grain for electron microscopy and to locate carbohydrates as they are deposited using immunogold labeling. The second uses cryofixation techniques, including high-pressure freezing and freeze substitution, to prepare delicate, tip-growing pollen tubes and to locate the intracellular site of a polysaccharide synthase. Both procedures can take as long as 2 weeks to achieve results, but there is scope to fast-track some steps depending on the physical characteristics of the material being processed.
Journal Article
Mass spectrometry imaging for plant biology: a review
by
Boughton, Berin A.
,
Bacic, Antony
,
Thinagaran, Dinaiz
in
Biochemistry
,
biologists
,
Biomedical and Life Sciences
2016
Mass spectrometry imaging (MSI) is a developing technique to measure the spatio-temporal distribution of many biomolecules in tissues. Over the preceding decade, MSI has been adopted by plant biologists and applied in a broad range of areas, including primary metabolism, natural products, plant defense, plant responses to abiotic and biotic stress, plant lipids and the developing field of spatial metabolomics. This review covers recent advances in plant-based MSI, general aspects of instrumentation, analytical approaches, sample preparation and the current trends in respective plant research.
Journal Article
Arabinogalactan-proteins of Zostera marina L. contain unique glycan structures and provide insight into adaption processes to saline environments
by
Shafee, Thomas
,
Classen, Birgit
,
Pfeifer, Lukas
in
631/449/2661/1797
,
631/449/448/1365
,
631/45/221
2020
Seagrasses evolved from monocotyledonous land plants that returned to the marine habitat. This transition was accomplished by substantial changes in cell wall composition, revealing habitat-driven adaption to the new environment. Whether arabinogalactan-proteins (AGPs), important signalling molecules of land plants, are present in seagrass cell walls is of evolutionary and plant development interest. AGPs of
Zostera marina
L. were isolated and structurally characterised by analytical and bioinformatics methods as well as by ELISA with different anti-AGP antibodies. Calcium-binding capacity of AGPs was studied by isothermal titration calorimetry (ITC) and microscopy. Bioinformatic searches of the
Z. marina
proteome identified 9 classical AGPs and a large number of chimeric AGPs. The glycan structures exhibit unique features, including a high degree of branching and an unusually high content of terminating 4-O-methyl-glucuronic acid (4-OMe GlcA) residues. Although the common backbone structure of land plant AGPs is conserved in
Z. marina
, the terminating residues are distinct with high amounts of uronic acids. These differences likely result from the glycan-active enzymes (glycosyltransferases and methyltransferases) and are essential for calcium-binding properties. The role of this polyanionic surface is discussed with regard to adaption to the marine environment.
Journal Article
Evolution of Sequence-Diverse Disordered Regions in a Protein Family: Order within the Chaos
2020
Approaches for studying the evolution of globular proteins are now well established yet are unsuitable for disordered sequences. Our understanding of the evolution of proteins containing disordered regions therefore lags that of globular proteins, limiting our capacity to estimate their evolutionary history, classify paralogs, and identify potential sequence–function relationships. Here, we overcome these limitations by using new analytical approaches that project representations of sequence space to dissect the evolution of proteins with both ordered and disordered regions, and the correlated changes between these. We use the fasciclin-like arabinogalactan proteins (FLAs) as a model family, since they contain a variable number of globular fasciclin domains as well as several distinct types of disordered regions: proline (Pro)-rich arabinogalactan (AG) regions and longer Pro-depleted regions.Sequence space projections of fasciclin domains from 2019 FLAs from 78 species identified distinct clusters corresponding to different types of fasciclin domains. Clusters can be similarly identified in the seemingly random Pro-rich AG and Pro-depleted disordered regions. Sequence features of the globular and disordered regions clearly correlate with one another, implying coevolution of these distinct regions, as well as with the N-linked and O-linked glycosylation motifs. We reconstruct the overall evolutionary history of the FLAs, annotated with the changing domain architectures, glycosylation motifs, number and length of AG regions, and disordered region sequence features. Mapping these features onto the functionally characterized FLAs therefore enables their sequence–function relationships to be interrogated. These findings will inform research on the abundant disordered regions in protein families from all kingdoms of life.
Journal Article
Blue Light Regulates Secondary Cell Wall Thickening via MYC2/MYC4 Activation of the NST1-Directed Transcriptional Network in Arabidopsis
2018
Secondary cell walls (SCWs) are formed in some specific types of plant cells, providing plants with mechanical strength. During plant growth and development, formation of secondary cell walls is regulated by various developmental and environmental signals. The underlying molecular mechanisms are poorly understood. In this study, we analyzed the blue light receptor cryptochrome1 (cry1) mutant of Arabidopsis thaliana for its SCW phenotypes. During inflorescence stem growth, SCW thickening in the vasculature was significantly affected by blue light. cry1 plants displayed a decline of SCW thickening in fiber cells, while CRY1 overexpression led to enhanced SCW formation. Transcriptome analysis indicated that the reduced SCW thickening was associated with repression of the NST1-directed transcription regulatory networks. Further analyses revealed that the expression of MYC2/MYC4 that is induced by blue light activates the transcriptional network underlying SCW thickening. The activation is caused by direct binding of MYC2/MYC4 to the NST1 promoter. This study demonstrates that SCW thickening in fiber cells is regulated by a blue light signal that is mediated through MYC2/MYC4 activation of NST1-directed SCW formation in Arabidopsis.
Journal Article
Metabolic responses to salt stress of barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differ in salinity tolerance
by
Patterson, John H.
,
Widodo
,
Bacic, Antony
in
Agronomy. Soil science and plant productions
,
Amino acid metabolism
,
Amino acids
2009
Plants show varied cellular responses to salinity that are partly associated with maintaining low cytosolic Na+ levels and a high K+/Na+ ratio. Plant metabolites change with elevated Na+, some changes are likely to help restore osmotic balance while others protect Na+-sensitive proteins. Metabolic responses to salt stress are described for two barley (Hordeum vulgare L.) cultivars, Sahara and Clipper, which differed in salinity tolerance under the experimental conditions used. After 3 weeks of salt treatment, Clipper ceased growing whereas Sahara resumed growth similar to the control plants. Compared with Clipper, Sahara had significantly higher leaf Na+ levels and less leaf necrosis, suggesting they are more tolerant to accumulated Na+. Metabolite changes in response to the salt treatment also differed between the two cultivars. Clipper plants had elevated levels of amino acids, including proline and GABA, and the polyamine putrescine, consistent with earlier suggestions that such accumulation may be correlated with slower growth and/or leaf necrosis rather than being an adaptive response to salinity. It is suggested that these metabolites may be an indicator of general cellular damage in plants. By contrast, in the more tolerant Sahara plants, the levels of the hexose phosphates, TCA cycle intermediates, and metabolites involved in cellular protection increased in response to salt. These solutes remain unchanged in the more sensitive Clipper plants. It is proposed that these responses in the more tolerant Sahara are involved in cellular protection in the leaves and are involved in the tolerance of Sahara leaves to high Na+.
Journal Article
Cell-Type-Specific H⁺-ATPase Activity in Root Tissues Enables K⁺ Retention and Mediates Acclimation of Barley (Hordeum vulgare) to Salinity Stress
by
Zhu, Min
,
Zhou, Meixue
,
Pottosin, Igor
in
Acclimatization - drug effects
,
Allantoin - pharmacology
,
Cations - metabolism
2016
While the importance of cell type specificity in plant adaptive responses is widely accepted, only a limited number of studies have addressed this issue at the functional level. We have combined electrophysiological, imaging, and biochemical techniques to reveal the physiological mechanisms conferring higher sensitivity of apical root cells to salinity in barley (Hordeum vulgare). We show that salinity application to the root apex arrests root growth in a highly tissue- and treatment-specific manner. Although salinity-induced transient net Na⁺ uptake was about 4-fold higher in the root apex compared with the mature zone, mature root cells accumulated more cytosolic and vacuolar Na⁺, suggesting that the higher sensitivity of apical cells to salt is not related to either enhanced Na⁺ exclusion or sequestration inside the root. Rather, the above differential sensitivity between the two zones originates from a 10-fold difference in K⁺ efflux between the mature zone and the apical region (much poorer in the root apex) of the root. Major factors contributing to this poor K⁺ retention ability are (1) an intrinsically lower H⁺-ATPase activity in the root apex, (2) greater salt-induced membrane depolarization, and (3) a higher reactive oxygen species production under NaCl and a larger density of reactive oxygen species-activated cation currents in the apex. Salinity treatment increased (2- to 5-fold) the content of 10 (out of 25 detected) amino acids in the root apex but not in the mature zone and changed the organic acid and sugar contents. The causal link between the observed changes in the root metabolic profile and the regulation of transporter activity is discussed.
Journal Article
Hitting the Wall—Sensing and Signaling Pathways Involved in Plant Cell Wall Remodeling in Response to Abiotic Stress
by
Bacic, Antony
,
Johnson, Kim L.
,
Novaković, Lazar
in
Abiotic stress
,
acclimation
,
Acclimatization
2018
Plant cells are surrounded by highly dynamic cell walls that play important roles regulating aspects of plant development. Recent advances in visualization and measurement of cell wall properties have enabled accumulation of new data about wall architecture and biomechanics. This has resulted in greater understanding of the dynamics of cell wall deposition and remodeling. The cell wall is the first line of defense against different adverse abiotic and biotic environmental influences. Different abiotic stress conditions such as salinity, drought, and frost trigger production of Reactive Oxygen Species (ROS) which act as important signaling molecules in stress activated cellular responses. Detection of ROS by still-elusive receptors triggers numerous signaling events that result in production of different protective compounds or even cell death, but most notably in stress-induced cell wall remodeling. This is mediated by different plant hormones, of which the most studied are jasmonic acid and brassinosteroids. In this review we highlight key factors involved in sensing, signal transduction, and response(s) to abiotic stress and how these mechanisms are related to cell wall-associated stress acclimatization. ROS, plant hormones, cell wall remodeling enzymes and different wall mechanosensors act coordinately during abiotic stress, resulting in abiotic stress wall acclimatization, enabling plants to survive adverse environmental conditions.
Journal Article