Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
75
result(s) for
"Bakker, Arjen"
Sort by:
Structure-Based Design of a Fusion Glycoprotein Vaccine for Respiratory Syncytial Virus
by
Kumar, Azad
,
Zhang, Baoshan
,
Soto, Cinque
in
Animals
,
Antibodies
,
Antibodies, Neutralizing - immunology
2013
Respiratory syncytial virus (RSV) is the leading cause of hospitalisation for children under 5 years of age. We sought to engineer a viral antigen that provides greater protection than currently available vaccines and focused on antigenic site φ, a metastable site specific to the prefusion state of the RSV fusion (F) glycoprotein, as this site is targeted by extremely potent RSV-neutralizing antibodies. Structure-based design yielded stabilized versions of RSV F that maintained antigenic site φ when exposed to extremes of pH, osmolality, and temperature. Six RSV F crystal structures provided atomic-level data on how introduced cysteine residues and filled hydrophobic cavities improved stability. Immunization with site φ—stabilized variants of RSV F in mice and macaques elicited levels of RSV-specific neutralizing activity many times the protective threshold.
Journal Article
Immune counter-evolution: immortalized B cell clones can undergo ex vivo directed evolution to counteract viral escape
by
Clerico Mosina, Vanessa
,
Villa, Alessandra
,
Heinen, Jurgen
in
affinity maturation
,
Antibodies
,
Antibodies, Monoclonal - immunology
2025
Amid the persistent threat of future pandemics, the continuous evolution of SARS-CoV-2 exposed critical challenges for vaccine efficacy and therapeutic interventions, highlighting the need for rapid and adaptable approaches to respond to immune escape variants.
Here, we report the use of immortalized B cell libraries from human peripheral blood mononuclear cells (PBMCs) and tonsil tissues to uncover B cell clones exhibiting cross-reactive neutralization against various SARS-CoV-2 variants and perform directed evolution of immortalized B cell clones to produce antibodies with improved binding and neutralization against emerging SARS-CoV-2 variants.
Immortalization of PBMC and tonsil-derived human B cells was achieved through transduction with retroviral vectors encoding apoptosis inhibitors, yielding transduction efficiencies of 67.5% for PBMCs and 50.2% for tonsil-derived cells. Analysis revealed that immortalized B cell libraries produced with this method retain diverse immunoglobulin isotype representations. Through high-throughput functional screening of approximately 40,000 B cells per library, we identified 12 unique clones with neutralization activity for SARS-CoV-2, leading to selection of monoclonal antibodies with robust neutralization activity against Delta and BA.5 variants. We applied our directed evolution approach to libraries generated by ex vivo AID-induced somatic hypermutation (SHM) of immortalized B cell clones to enhance the affinity and cross-reactivity, resulting in improved binding and neutralization potency to escape variants such as EG.5.1 and JN.1. Furthermore, we engineered a bi-paratopic antibody combining KBA2401, a broadly neutralizing antibody binding to highly conserved epitope on Spike-RBD, and KBA2402, a broadly binding non-neutralizing antibody, resulting in enhanced potency against SARS-CoV-2 variant JN.1 and KP.3.
Our findings illustrate the use of immortalized B cell libraries for development of therapeutics that adapt to viral evolution and highlight the application of ex vivo directed evolution in refining antibody responses against emerging immune escape SARS-CoV-2 variants. The approach here described offers a promising pathway for rapid therapeutic development in the face of evolving viral threats.
Journal Article
Hepatitis C virus Broadly Neutralizing Monoclonal Antibodies Isolated 25 Years after Spontaneous Clearance
by
van de Berg, Dorien
,
Grady, Bart P.
,
Claassen, Yvonne B.
in
Adult
,
Antibodies, Monoclonal - isolation & purification
,
Antibodies, Neutralizing - isolation & purification
2016
Hepatitis C virus (HCV) is world-wide a major cause of liver related morbidity and mortality. No vaccine is available to prevent HCV infection. To design an effective vaccine, understanding immunity against HCV is necessary. The memory B cell repertoire was characterized from an intravenous drug user who spontaneously cleared HCV infection 25 years ago. CD27+IgG+ memory B cells were immortalized using BCL6 and Bcl-xL. These immortalized B cells were used to study antibody-mediated immunity against the HCV E1E2 glycoproteins. Five E1E2 broadly reactive antibodies were isolated: 3 antibodies showed potent neutralization of genotype 1 to 4 using HCV pseudotyped particles, whereas the other 2 antibodies neutralized genotype 1, 2 and 3 or 1 and 2 only. All antibodies recognized non-linear epitopes on E2. Finally, except for antibody AT12-011, which recognized an epitope consisting of antigenic domain C /AR2 and AR5, all other four antibodies recognized epitope II and domain B. These data show that a subject, who spontaneously cleared HCV infection 25 years ago, still has circulating memory B cells that are able to secrete broadly neutralizing antibodies. Presence of such memory B cells strengthens the argument for undertaking the development of an HCV vaccine.
Journal Article
common solution to group 2 influenza virus neutralization
by
Stoop, Esther J. M.
,
Hoffman, Ryan M. B.
,
Lee, Peter S.
in
amino acid sequences
,
Amino acids
,
Animals
2014
The discovery and characterization of broadly neutralizing antibodies (bnAbs) against influenza viruses have raised hopes for the development of monoclonal antibody (mAb)-based immunotherapy and the design of universal influenza vaccines. Only one human bnAb (CR8020) specifically recognizing group 2 influenza A viruses has been previously characterized that binds to a highly conserved epitope at the base of the hemagglutinin (HA) stem and has neutralizing activity against H3, H7, and H10 viruses. Here, we report a second group 2 bnAb, CR8043, which was derived from a different germ-line gene encoding a highly divergent amino acid sequence. CR8043 has in vitro neutralizing activity against H3 and H10 viruses and protects mice against challenge with a lethal dose of H3N2 and H7N7 viruses. The crystal structure and EM reconstructions of the CR8043-H3 HA complex revealed that CR8043 binds to a site similar to the CR8020 epitope but uses an alternative angle of approach and a distinct set of interactions. The identification of another antibody against the group 2 stem epitope suggests that this conserved site of vulnerability has great potential for design of therapeutics and vaccines.
Journal Article
Functional CD47/signal regulatory protein alpha (SIRPα) interaction is required for optimal human T- and natural killer- (NK) cell homeostasis in vivo
by
de Geus, Sandra J
,
Pouw, Stephan M
,
Di Santo, James P
in
Animals
,
Antigens, Differentiation - metabolism
,
B lymphocytes
2011
The homeostatic control mechanisms regulating human leukocyte numbers are poorly understood. Here, we assessed the role of phagocytes in this process using human immune system (HIS) BALB/c Rag2â»/â»IL-2Rγcâ»/â» mice in which human leukocytes are generated from transplanted hematopoietic progenitor cells. Interactions between signal regulatory protein alpha (SIRPα; expressed on phagocytes) and CD47 (expressed on hematopoietic cells) negatively regulate phagocyte activity of macrophages and other phagocytic cells. We previously showed that B cells develop and survive robustly in HIS mice, whereas T and natural killer (NK) cells survive poorly. Because human CD47 does not interact with BALB/c mouse SIRPα, we introduced functional CD47/SIRPα interactions in HIS mice by transducing mouse CD47 into human progenitor cells. Here, we show that this procedure resulted in a dramatic and selective improvement of progenitor cell engraftment and human T- and NK-cell homeostasis in HIS mouse peripheral lymphoid organs. The amount of engrafted human B cells also increased but much less than that of T and NK cells, and total plasma IgM and IgG concentrations increased 68- and 35-fold, respectively. Whereas T cells exhibit an activated/memory phenotype in the absence of functional CD47/SIRPα interactions, human T cells accumulated as CD4⺠or CD8⺠single-positive, naive, resting T cells in the presence of functional CD47/SIRPα interactions. Thus, in addition to signals mediated by T cell receptor (TCR)/MHC and/or IL/IL receptor interactions, sensing of cell surface CD47 expression by phagocyte SIRPα is a critical determinant of T- and NK-cell homeostasis under steady-state conditions in vivo.
Journal Article
Generation of stable monoclonal antibody–producing B cell receptor–positive human memory B cells by genetic programming
by
Lukens, Michaël V
,
Kwakkenbos, Mark J
,
Mei, Henrik
in
Animals
,
Antibodies, Monoclonal - biosynthesis
,
Antibodies, Monoclonal - genetics
2010
Kwakkenbos
et al
. describe an
in vitro
method to generate antibody-secreting B cell lines from human peripheral blood memory B cells by transducing them with retroviral vectors encoding Bcl-6 and Bcl-xL. The approach can be used to stably and simultaneously produce high levels of B cell receptor (BCR) on the cell surface and secreted immunoglobulins, useful for studying BCR signaling and producing antigen-specific antibodies.
The B cell lymphoma-6 (Bcl-6) and Bcl-xL proteins are expressed in germinal center B cells and enable them to endure the proliferative and mutagenic environment of the germinal center. By introducing these genes into peripheral blood memory B cells and culturing these cells with two factors produced by follicular helper T cells, CD40 ligand (CD40L) and interleukin-21 (IL-21), we convert them to highly proliferating, cell surface B cell receptor (BCR)–positive, immunoglobulin-secreting B cells with features of germinal center B cells, including expression of activation-induced cytidine deaminase (AID). We generated cloned lines of B cells specific for respiratory syncytial virus and used these cells as a source of antibodies that effectively neutralized this virus
in vivo
. This method provides a new tool to study B cell biology and signal transduction through antigen-specific B cell receptors and for the rapid generation of high-affinity human monoclonal antibodies.
Journal Article
Bispecific antibody generated with sortase and click chemistry has broad antiinfluenza virus activity
by
Claassen, Yvonne B.
,
van Zoelen, Diana J.
,
Wagner, Koen
in
Antibodies
,
Antibodies, Bispecific - biosynthesis
,
Antibodies, Bispecific - chemistry
2014
Bispecific antibodies have therapeutic potential by expanding the functions of conventional antibodies. Many different formats of bispecific antibodies have meanwhile been developed. Most are genetic modifications of the antibody backbone to facilitate incorporation of two different variable domains into a single molecule. Here, we present a bispecific format where we have fused two full-sized IgG antibodies via their C termini using sortase transpeptidation and click chemistry to create a covalently linked IgG antibody heterodimer. By linking two potent anti-influenza A antibodies together, we have generated a full antibody dimer with bispecific activity that retains the activity and stability of the two fusion partners.
Significance Bispecific antibodies expand the function of conventional antibodies. However, therapeutic application of bispecifics is hampered by the reduced physiochemical stability of such molecules. We present a format for bispecific antibodies, fusing two full-sized antibodies via their C termini. This format does not require mutations in the antibody constant domains beyond installation of a five-residue tag, ensuring that the native antibody structure is fully retained in the bispecific product. We have validated the approach by linking two anti-influenza A antibodies, each active against a different subgroup of the virus. The bispecific antibody dimer retains the activity and the stability of the two original antibodies.
Journal Article
Multiple capsid-stabilizing interactions revealed in a high-resolution structure of an emerging picornavirus causing neonatal sepsis
2016
The poorly studied picornavirus, human parechovirus 3 (HPeV3) causes neonatal sepsis with no therapies available. Our 4.3-Å resolution structure of HPeV3 on its own and at 15 Å resolution in complex with human monoclonal antibody Fabs demonstrates the expected picornavirus capsid structure with three distinct features. First, 25% of the HPeV3 RNA genome in 60 sites is highly ordered as confirmed by asymmetric reconstruction, and interacts with conserved regions of the capsid proteins VP1 and VP3. Second, the VP0 N terminus stabilizes the capsid inner surface, in contrast to other picornaviruses where on expulsion as VP4, it forms an RNA translocation channel. Last, VP1’s hydrophobic pocket, the binding site for the antipicornaviral drug, pleconaril, is blocked and thus inappropriate for antiviral development. Together, these results suggest a direction for development of neutralizing antibodies, antiviral drugs based on targeting the RNA–protein interactions and dissection of virus assembly on the basis of RNA nucleation.
Human parechovirus 3 (HPeV3) can cause severe central nervous system infections and is a major cause of neonatal sepsis. Here the authors determine the structure of HPeV3 that provides a high-resolution view of the capsid’s organization and shows multiple interactions of the RNA genome with coat proteins.
Journal Article
Heterosubtypic Neutralizing Monoclonal Antibodies Cross-Protective against H5N1 and H1N1 Recovered from Human IgM+ Memory B Cells
by
Cinatl, Jindrich
,
Carsetti, Rita
,
Throsby, Mark
in
Amino Acid Sequence
,
Animals
,
Antibodies, Monoclonal - chemistry
2008
The hemagglutinin (HA) glycoprotein is the principal target of protective humoral immune responses to influenza virus infections but such antibody responses only provide efficient protection against a narrow spectrum of HA antigenic variants within a given virus subtype. Avian influenza viruses such as H5N1 are currently panzootic and pose a pandemic threat. These viruses are antigenically diverse and protective strategies need to cross protect against diverse viral clades. Furthermore, there are 16 different HA subtypes and no certainty the next pandemic will be caused by an H5 subtype, thus it is important to develop prophylactic and therapeutic interventions that provide heterosubtypic protection.
Here we describe a panel of 13 monoclonal antibodies (mAbs) recovered from combinatorial display libraries that were constructed from human IgM(+) memory B cells of recent (seasonal) influenza vaccinees. The mAbs have broad heterosubtypic neutralizing activity against antigenically diverse H1, H2, H5, H6, H8 and H9 influenza subtypes. Restriction to variable heavy chain gene IGHV1-69 in the high affinity mAb panel was associated with binding to a conserved hydrophobic pocket in the stem domain of HA. The most potent antibody (CR6261) was protective in mice when given before and after lethal H5N1 or H1N1 challenge.
The human monoclonal CR6261 described in this study could be developed for use as a broad spectrum agent for prophylaxis or treatment of human or avian influenza infections without prior strain characterization. Moreover, the CR6261 epitope could be applied in targeted vaccine strategies or in the design of novel antivirals. Finally our approach of screening the IgM(+) memory repertoire could be applied to identify conserved and functionally relevant targets on other rapidly evolving pathogens.
Journal Article
Novel Staphylococcal Glycosyltransferases SdgA and SdgB Mediate Immunogenicity and Protection of Virulence-Associated Cell Wall Proteins
by
Kajihara, Kimberly K.
,
Sebrell, Andrew
,
Tan, Man-Wah
in
Adhesion
,
Animals
,
Antibodies, Bacterial - genetics
2013
Infection of host tissues by Staphylococcus aureus and S. epidermidis requires an unusual family of staphylococcal adhesive proteins that contain long stretches of serine-aspartate dipeptide-repeats (SDR). The prototype member of this family is clumping factor A (ClfA), a key virulence factor that mediates adhesion to host tissues by binding to extracellular matrix proteins such as fibrinogen. However, the biological siginificance of the SDR-domain and its implication for pathogenesis remain poorly understood. Here, we identified two novel bacterial glycosyltransferases, SdgA and SdgB, which modify all SDR-proteins in these two bacterial species. Genetic and biochemical data demonstrated that these two glycosyltransferases directly bind and covalently link N-acetylglucosamine (GlcNAc) moieties to the SDR-domain in a step-wise manner, with SdgB appending the sugar residues proximal to the target Ser-Asp repeats, followed by additional modification by SdgA. GlcNAc-modification of SDR-proteins by SdgB creates an immunodominant epitope for highly opsonic human antibodies, which represent up to 1% of total human IgG. Deletion of these glycosyltransferases renders SDR-proteins vulnerable to proteolysis by human neutrophil-derived cathepsin G. Thus, SdgA and SdgB glycosylate staphylococcal SDR-proteins, which protects them against host proteolytic activity, and yet generates major eptopes for the human anti-staphylococcal antibody response, which may represent an ongoing competition between host and pathogen.
Journal Article