Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
70 result(s) for "Barnaghi, Payam"
Sort by:
Network analysis to identify symptoms clusters and temporal interconnections in oncology patients
Oncology patients experience numerous co-occurring symptoms during their treatment. The identification of sentinel/core symptoms is a vital prerequisite for therapeutic interventions. In this study, using Network Analysis, we investigated the inter-relationships among 38 common symptoms over time (i.e., a total of six time points over two cycles of chemotherapy) in 987 oncology patients with four different types of cancer (i.e., breast, gastrointestinal, gynaecological, and lung). In addition, we evaluated the associations between and among symptoms and symptoms clusters and examined the strength of these interactions over time. Eight unique symptom clusters were identified within the networks. Findings from this research suggest that changes occur in the relationships and interconnections between and among co-occurring symptoms and symptoms clusters that depend on the time point in the chemotherapy cycle and the type of cancer. The evaluation of the centrality measures provides new insights into the relative importance of individual symptoms within various networks that can be considered as potential targets for symptom management interventions.
Network Analysis of the Multidimensional Symptom Experience of Oncology
Oncology patients undergoing cancer treatment experience an average of fifteen unrelieved symptoms that are highly variable in both their severity and distress. Recent advances in Network Analysis (NA) provide a novel approach to gain insights into the complex nature of co-occurring symptoms and symptom clusters and identify core symptoms. We present findings from the first study that used NA to examine the relationships among 38 common symptoms in a large sample of oncology patients undergoing chemotherapy. Using two different models of Pairwise Markov Random Fields (PMRF), we examined the nature and structure of interactions for three different dimensions of patients’ symptom experience (i.e., occurrence, severity, distress). Findings from this study provide the first direct evidence that the connections between and among symptoms differ depending on the symptom dimension used to create the network. Based on an evaluation of the centrality indices, nausea appears to be a structurally important node in all three networks. Our findings can be used to guide the development of symptom management interventions based on the identification of core symptoms and symptom clusters within a network.
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.
Machine learning methods for detecting urinary tract infection and analysing daily living activities in people with dementia
Dementia is a neurological and cognitive condition that affects millions of people around the world. At any given time in the United Kingdom, 1 in 4 hospital beds are occupied by a person with dementia, while about 22% of these hospital admissions are due to preventable causes. In this paper we discuss using Internet of Things (IoT) technologies and in-home sensory devices in combination with machine learning techniques to monitor health and well-being of people with dementia. This will allow us to provide more effective and preventative care and reduce preventable hospital admissions. One of the unique aspects of this work is combining environmental data with physiological data collected via low cost in-home sensory devices to extract actionable information regarding the health and well-being of people with dementia in their own home environment. We have worked with clinicians to design our machine learning algorithms where we focused on developing solutions for real-world settings. In our solutions, we avoid generating too many alerts/alarms to prevent increasing the monitoring and support workload. We have designed an algorithm to detect Urinary Tract Infections (UTI) which is one of the top five reasons of hospital admissions for people with dementia (around 9% of hospital admissions for people with dementia in the UK). To develop the UTI detection algorithm, we have used a Non-negative Matrix Factorisation (NMF) technique to extract latent factors from raw observation and use them for clustering and identifying the possible UTI cases. In addition, we have designed an algorithm for detecting changes in activity patterns to identify early symptoms of cognitive decline or health decline in order to provide personalised and preventative care services. For this purpose, we have used an Isolation Forest (iForest) technique to create a holistic view of the daily activity patterns. This paper describes the algorithms and discusses the evaluation of the work using a large set of real-world data collected from a trial with people with dementia and their caregivers.
Analysing Remote Nocturnal Activity and Sleep Monitoring Data to Develop Predictive Models in Dementia Care
Background Close to 23% of unplanned hospital admissions for people living with dementia (PLWD) are due to potentially preventable causes such as severe urinary tract infections (UTIs), falls, and respiratory problems. These affect the well‐being of PLWD, cause stress to carers and increase pressure on healthcare services. Method We use routinely collected in‐home sensory data to monitor nocturnal activity and sleep data. Result We apply machine learning models to develop a new generation of dementia care solutions to analyse changes in patterns. Conclusion Developing machine learning models to analyze in‐home sleep data will help enable detection of sleep changes and timely interventions.
Fusion Models for Generalized Classification of Multi-Axial Human Movement: Validation in Sport Performance
We introduce a set of input models for fusing information from ensembles of wearable sensors supporting human performance and telemedicine. Veracity is demonstrated in action classification related to sport, specifically strikes in boxing and taekwondo. Four input models, formulated to be compatible with a broad range of classifiers, are introduced and two diverse classifiers, dynamic time warping (DTW) and convolutional neural networks (CNNs) are implemented in conjunction with the input models. Seven classification models fusing information at the input-level, output-level, and a combination of both are formulated. Action classification for 18 boxing punches and 24 taekwondo kicks demonstrate our fusion classifiers outperform the best DTW and CNN uni-axial classifiers. Furthermore, although DTW is ostensibly an ideal choice for human movements experiencing non-linear variations, our results demonstrate deep learning fusion classifiers outperform DTW. This is a novel finding given that CNNs are normally designed for multi-dimensional data and do not specifically compensate for non-linear variations within signal classes. The generalized formulation enables subject-specific movement classification in a feature-blind fashion with trivial computational expense for trained CNNs. A commercial boxing system, ‘Corner’, has been produced for real-world mass-market use based on this investigation providing a basis for future telemedicine translation.
Discovering patient groups in sequential electronic healthcare data using unsupervised representation learning
Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR). We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis. We trained a document embedding model under a unique evaluation pipeline and obtained latent patient feature vectors for all 1853 patients. We performed unsupervised clustering to the patient vectors as a downstream analysis and obtained 5 distinct clusters via hyperparameter optimisation. Significant variations (p<0.0001) within both patient characteristics and surgery intervention and diagnostic profiles were detected. The K-means clustering results demonstrated the clinical utilities of the patient-specific features learned from the embedding algorithms. The latent patient features obtained via the embedding process enabled direct applications of other machine learning algorithms. Future work will focus on utilising the temporal information within EHR and extending EHR embedding algorithms to develop personalised patient journey predictions.
TIHM: An open dataset for remote healthcare monitoring in dementia
Dementia is a progressive condition that affects cognitive and functional abilities. There is a need for reliable and continuous health monitoring of People Living with Dementia (PLWD) to improve their quality of life and support their independent living. Healthcare services often focus on addressing and treating already established health conditions that affect PLWD. Managing these conditions continuously can inform better decision-making earlier for higher-quality care management for PLWD. The Technology Integrated Health Management (TIHM) project developed a new digital platform to routinely collect longitudinal, observational, and measurement data, within the home and apply machine learning and analytical models for the detection and prediction of adverse health events affecting the well-being of PLWD. This work describes the TIHM dataset collected during the second phase (i.e., feasibility study) of the TIHM project. The data was collected from homes of 56 PLWD and associated with events and clinical observations (daily activity, physiological monitoring, and labels for health-related conditions). The study recorded an average of 50 days of data per participant, totalling 2803 days.
Assessment of sleep patterns in dementia and general population cohorts using passive in-home monitoring technologies
Background Nocturnal disturbances are a common symptom experienced by People Living with Dementia (PLWD), and these often present prior to diagnosis. Whilst sleep anomalies have been frequently reported, most studies have been conducted in lab environments, which are expensive, invasive and not natural sleeping environments. In this study, we investigate the use of in-home nocturnal monitoring technologies, which enable passive data collection, at low cost, in real-world environments, and without requiring a change in routine. Methods Clustering analysis of passively collected sleep data in the natural sleep environment can help identify distinct sub-groups based on sleep patterns. The analysis uses sleep activity data from; (1) the Minder study, collecting in-home data from PLWD and (2) a general population dataset (combined n  = 100, >9500 person-nights). Results Unsupervised clustering and profiling analysis identifies three distinct clusters. One cluster is predominantly PLWD relative to the two other groups (72% ± 3.22, p  = 6.4 × 10 −7 , p  = 1.2 × 10 −2 ) and has the highest mean age (77.96 ± 0.93, p  = 6.8 × 10 −4 and p  = 6.4 × 10 −7 ). This cluster is defined by increases in light and wake after sleep onset ( p  = 1.5 × 10 −22 , p  = 1.4 × 10 −7 and p  = 1.7 × 10 −22 , p  = 1.4 × 10 −23 ) and decreases in rapid eye movement ( p  = 5.5 × 10 −12 , p  = 5.9 × 10 −7 ) and non-rapid eye movement sleep duration ( p  = 1.7 × 10 −4 , p  = 3.8 × 10 −11 ), in comparison to the general population. Conclusions In line with current clinical knowledge, these results suggest detectable dementia sleep phenotypes, highlighting the potential for using passive digital technologies in PLWD, and for  detecting architectural sleep changes more generally. This study indicates the feasibility of leveraging passive in-home technologies for disease monitoring. Rigny et al. evaluate passive in-home nocturnal monitoring in real-world settings to identify distinct sleep pattern sub-groups between people living with dementia and the general population. The feasibility of using these technologies for screening dementia-related sleep signatures and monitoring broader sleep changes is demonstrated. Plain language summary People living with dementia commonly sleep poorly at night, and this often occurs before they are diagnosed with dementia. We investigated whether a sleep sensor placed under a person’s mattress could monitor sleep activity in people with dementia without disrupting their normal daily routines and behaviour. We compared sleep data collected from both people with dementia and the general population to identify whether differences could be detected. We found identifiable dementia-related sleep patterns, suggesting sleep sensors could be used both to monitor disease and more generally in research. In the future, using these types of sensors could enable better care for people living with dementia by monitoring their sleep.