MbrlCatalogueTitleDetail

Do you wish to reserve the book?
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Hey, we have placed the reservation for you!
Hey, we have placed the reservation for you!
By the way, why not check out events that you can attend while you pick your title.
You are currently in the queue to collect this book. You will be notified once it is your turn to collect the book.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place the reservation. Kindly try again later.
Are you sure you want to remove the book from the shelf?
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
Title added to your shelf!
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Do you wish to request the book?
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques

Please be aware that the book you have requested cannot be checked out. If you would like to checkout this book, you can reserve another copy
How would you like to get it?
We have requested the book for you! Sorry the robot delivery is not available at the moment
We have requested the book for you!
We have requested the book for you!
Your request is successful and it will be processed during the Library working hours. Please check the status of your request in My Requests.
Oops! Something went wrong.
Oops! Something went wrong.
Looks like we were not able to place your request. Kindly try again later.
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques
Journal Article

Health management and pattern analysis of daily living activities of people with dementia using in-home sensors and machine learning techniques

2018
Request Book From Autostore and Choose the Collection Method
Overview
The number of people diagnosed with dementia is expected to rise in the coming years. Given that there is currently no definite cure for dementia and the cost of care for this condition soars dramatically, slowing the decline and maintaining independent living are important goals for supporting people with dementia. This paper discusses a study that is called Technology Integrated Health Management (TIHM). TIHM is a technology assisted monitoring system that uses Internet of Things (IoT) enabled solutions for continuous monitoring of people with dementia in their own homes. We have developed machine learning algorithms to analyse the correlation between environmental data collected by IoT technologies in TIHM in order to monitor and facilitate the physical well-being of people with dementia. The algorithms are developed with different temporal granularity to process the data for long-term and short-term analysis. We extract higher-level activity patterns which are then used to detect any change in patients' routines. We have also developed a hierarchical information fusion approach for detecting agitation, irritability and aggression. We have conducted evaluations using sensory data collected from homes of people with dementia. The proposed techniques are able to recognise agitation and unusual patterns with an accuracy of up to 80%.