Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
23
result(s) for
"Basinski, Andrew"
Sort by:
Bridging the gap: Using reservoir ecology and human serosurveys to estimate Lassa virus spillover in West Africa
by
Fichet-Calvet, Elisabeth
,
Sjodin, Anna R.
,
Jarvis, Michael A.
in
Animal populations
,
Biology and Life Sciences
,
Datasets
2021
Forecasting the risk of pathogen spillover from reservoir populations of wild or domestic animals is essential for the effective deployment of interventions such as wildlife vaccination or culling. Due to the sporadic nature of spillover events and limited availability of data, developing and validating robust, spatially explicit, predictions is challenging. Recent efforts have begun to make progress in this direction by capitalizing on machine learning methodologies. An important weakness of existing approaches, however, is that they generally rely on combining human and reservoir infection data during the training process and thus conflate risk attributable to the prevalence of the pathogen in the reservoir population with the risk attributed to the realized rate of spillover into the human population. Because effective planning of interventions requires that these components of risk be disentangled, we developed a multi-layer machine learning framework that separates these processes. Our approach begins by training models to predict the geographic range of the primary reservoir and the subset of this range in which the pathogen occurs. The spillover risk predicted by the product of these reservoir specific models is then fit to data on realized patterns of historical spillover into the human population. The result is a geographically specific spillover risk forecast that can be easily decomposed and used to guide effective intervention. Applying our method to Lassa virus, a zoonotic pathogen that regularly spills over into the human population across West Africa, results in a model that explains a modest but statistically significant portion of geographic variation in historical patterns of spillover. When combined with a mechanistic mathematical model of infection dynamics, our spillover risk model predicts that 897,700 humans are infected by Lassa virus each year across West Africa, with Nigeria accounting for more than half of these human infections.
Journal Article
Quantifying the risk of spillover reduction programs for human health
by
Remien, Christopher H.
,
Eskew, Evan A.
,
Fichet-Calvet, Elisabeth
in
Africa, Western - epidemiology
,
Age composition
,
Animals
2024
Reducing spillover of zoonotic pathogens is an appealing approach to preventing human disease and minimizing the risk of future epidemics and pandemics. Although the immediate human health benefit of reducing spillover is clear, over time, spillover reduction could lead to counterintuitive negative consequences for human health. Here, we use mathematical models and computer simulations to explore the conditions under which unanticipated consequences of spillover reduction can occur in systems where the severity of disease increases with age at infection. Our results demonstrate that, because the average age at infection increases as spillover is reduced, programs that reduce spillover can actually increase population-level disease burden if the clinical severity of infection increases sufficiently rapidly with age. If, however, immunity wanes over time and reinfection is possible, our results reveal that negative health impacts of spillover reduction become substantially less likely. When our model is parameterized using published data on Lassa virus in West Africa, it predicts that negative health outcomes are possible, but likely to be restricted to a small subset of populations where spillover is unusually intense. Together, our results suggest that adverse consequences of spillover reduction programs are unlikely but that the public health gains observed immediately after spillover reduction may fade over time as the age structure of immunity gradually re-equilibrates to a reduced force of infection.
Journal Article
Optimizing the delivery of self-disseminating vaccines in fluctuating wildlife populations
by
Remien, Christopher H.
,
Nuismer, Scott L.
,
Basinski, Andrew J.
in
Animal populations
,
Baits
,
Biology and Life Sciences
2023
Zoonotic pathogens spread by wildlife continue to spill into human populations and threaten human lives. A potential way to reduce this threat is by vaccinating wildlife species that harbor pathogens that are infectious to humans. Unfortunately, even in cases where vaccines can be distributed en masse as edible baits, achieving levels of vaccine coverage sufficient for pathogen elimination is rare. Developing vaccines that self-disseminate may help solve this problem by magnifying the impact of limited direct vaccination. Although models exist that quantify how well these self-disseminating vaccines will work when introduced into temporally stable wildlife populations, how well they will perform when introduced into populations with pronounced seasonal population dynamics remains unknown. Here we develop and analyze mathematical models of fluctuating wildlife populations that allow us to study how reservoir ecology, vaccine design, and vaccine delivery interact to influence vaccine coverage and opportunities for pathogen elimination. Our results demonstrate that the timing of vaccine delivery can make or break the success of vaccination programs. As a general rule, the effectiveness of self-disseminating vaccines is optimized by introducing after the peak of seasonal reproduction when the number of susceptible animals is near its maximum.
Journal Article
Reservoir displacement by an invasive rodent reduces Lassa virus zoonotic spillover risk
by
Fichet-Calvet, Elisabeth
,
Lungay, Victor
,
Ghersi, Bruno M.
in
631/158/2178
,
631/158/853
,
692/699/255/2514
2024
The black rat (
Rattus rattus
) is a globally invasive species that has been widely introduced across Africa. Within its invasive range in West Africa,
R. rattus
may compete with the native rodent
Mastomys natalensis
, the primary reservoir host of Lassa virus, a zoonotic pathogen that kills thousands annually. Here, we use rodent trapping data from Sierra Leone and Guinea to show that
R. rattus
presence reduces
M. natalensis
density within the human dwellings where Lassa virus exposure is most likely to occur. Further, we integrate infection data from
M. natalensis
to demonstrate that Lassa virus zoonotic spillover risk is lower at sites with
R. rattus
. While non-native species can have numerous negative effects on ecosystems, our results suggest that
R. rattus
invasion has the indirect benefit of decreasing zoonotic spillover of an endemic pathogen, with important implications for invasive species control across West Africa.
Mastomys natalensis
is a rodent species native to West Africa that is the primary reservoir host for Lassa virus. Here, the authors investigate whether the invasive rodent
Rattus rattus
decreases
M. natalensis
density and could therefore indirectly decrease zoonotic transmission of Lassa virus to humans.
Journal Article
A little goes a long way: Weak vaccine transmission facilitates oral vaccination campaigns against zoonotic pathogens
by
Remien, Christopher H.
,
Nuismer, Scott L.
,
Basinski, Andrew J.
in
Administration, Oral
,
Animal population
,
Animal populations
2019
Zoonotic pathogens such as Ebola and rabies pose a major health risk to humans. One proven approach to minimizing the impact of a pathogen relies on reducing its prevalence within animal reservoir populations using mass vaccination. However, two major challenges remain for vaccination programs that target free-ranging animal populations. First, limited or challenging access to wild hosts, and second, expenses associated with purchasing and distributing the vaccine. Together, these challenges constrain a campaign's ability to maintain adequate levels of immunity in the host population for an extended period of time. Transmissible vaccines could lessen these constraints, improving our ability to both establish and maintain herd immunity in free-ranging animal populations. Because the extent to which vaccine transmission could augment current wildlife vaccination campaigns is unknown, we develop and parameterize a mathematical model that describes long-term mass vaccination campaigns in the US that target rabies in wildlife. The model is used to investigate the ability of a weakly transmissible vaccine to (1) increase vaccine coverage in campaigns that fail to immunize at levels required for herd immunity, and (2) decrease the expense of campaigns that achieve herd immunity. When parameterized to efforts that target rabies in raccoons using vaccine baits, our model indicates that, with current vaccination efforts, a vaccine that transmits to even one additional host per vaccinated individual could sufficiently augment US efforts to preempt the spread of the rabies virus. Higher levels of transmission are needed, however, when spatial heterogeneities associated with flight-line vaccination are incorporated into the model. In addition to augmenting deficient campaigns, our results show that weak vaccine transmission can reduce the costs of vaccination campaigns that are successful in attaining herd immunity.
Journal Article
Quantifying the effectiveness of betaherpesvirus-vectored transmissible vaccines
by
Remien, Christopher H.
,
Nuismer, Scott L.
,
Varrelman, Tanner J.
in
Algorithms
,
Animal Diseases - prevention & control
,
Animal Diseases - transmission
2022
Transmissible vaccines have the potential to revolutionize how zoonotic pathogens are controlled within wildlife reservoirs. A key challenge that must be overcome is identifying viral vectors that can rapidly spread immunity through a reservoir population. Because they are broadly distributed taxonomically, species specific, and stable to genetic manipulation, betaherpesviruses are leading candidates for use as transmissible vaccine vectors. Here we evaluate the likely effectiveness of betaherpesvirus-vectored transmissible vaccines by developing and parameterizing a mathematical model using data from captive and free-living mouse populations infected with murine cytomegalovirus (MCMV). Simulations of our parameterized model demonstrate rapid and effective control for a range of pathogens, with pathogen elimination frequently occurring within a year of vaccine introduction. Our results also suggest, however, that the effectiveness of transmissible vaccines may vary across reservoir populations and with respect to the specific vector strain used to construct the vaccine.
Journal Article
Bayesian estimation of Lassa virus epidemiological parameters: Implications for spillover prevention using wildlife vaccination
by
Remien, Christopher H.
,
Bird, Brian
,
Fichet-Calvet, Elisabeth
in
Baits
,
Bayesian analysis
,
Bioinformatics
2020
Lassa virus is a significant burden on human health throughout its endemic region in West Africa, with most human infections the result of spillover from the primary rodent reservoir of the virus, the natal multimammate mouse, M. natalensis. Here we develop a Bayesian methodology for estimating epidemiological parameters of Lassa virus within its rodent reservoir and for generating probabilistic predictions for the efficacy of rodent vaccination programs. Our approach uses Approximate Bayesian Computation (ABC) to integrate mechanistic mathematical models, remotely-sensed precipitation data, and Lassa virus surveillance data from rodent populations. Using simulated data, we show that our method accurately estimates key model parameters, even when surveillance data are available from only a relatively small number of points in space and time. Applying our method to previously published data from two villages in Guinea estimates the time-averaged R.sub.0 of Lassa virus to be 1.74 and 1.54 for rodent populations in the villages of Bantou and Tanganya, respectively. Using the posterior distribution for model parameters derived from these Guinean populations, we evaluate the likely efficacy of vaccination programs relying on distribution of vaccine-laced baits. Our results demonstrate that effective and durable reductions in the risk of Lassa virus spillover into the human population will require repeated distribution of large quantities of vaccine.
Journal Article
When to vaccinate a fluctuating wildlife population
by
Nuismer, Scott L.
,
Basinski, Andrew J.
,
Schreiner, Courtney L.
in
applied ecology
,
Computer simulation
,
computers
2020
Wildlife vaccination is an important tool for managing the burden of infectious disease in human populations, domesticated livestock and various iconic wildlife. Although substantial progress has been made in the field of vaccine designs for wildlife, there is a gap in our understanding of how to time wildlife vaccination, relative to host demography, to best protect a population. We use a mathematical model and computer simulations to assess the outcomes of vaccination campaigns that deploy vaccines once per annual population cycle. Optimal timing of vaccination is an important consideration in animals with short to intermediate life spans and a short birthing season. Vaccines that are deployed shortly after the birthing season best protect the host population. The importance of timing is greater in wildlife pathogens that have a high rate of transmission and a short recovery period. Vaccinating at the end of the birthing season best reduces the mean abundance of pathogen‐infected hosts. Delaying vaccination until later in the year can facilitate pathogen elimination. Policy Implications. Tuning wildlife vaccination campaigns to host demography and pathogen traits can substantially increase the effectiveness of a campaign. Our results suggest that, for a fluctuating population, vaccinating at, or shortly after, the end of the birthing season, best protects the population against an invading pathogen. If the pathogen is already endemic, delaying vaccination until after the birthing season is over can help facilitate pathogen elimination. Our results highlight the need to better understand and predict host demography in wildlife populations that are targeted for vaccination. Tuning wildlife vaccination campaigns to host demography and pathogen traits can substantially increase the effectiveness of a campaign. Our results suggest that, for a fluctuating population, vaccinating at, or shortly after, the end of the birthing season, best protects the population against an invading pathogen. If the pathogen is already endemic, delaying vaccination until after the birthing season is over can help facilitate pathogen elimination. Our results highlight the need to better understand and predict host demography in wildlife populations that are targeted for vaccination.
Journal Article
Evaluating the promise of recombinant transmissible vaccines
by
Remien, Christopher H.
,
May, Ryan H.
,
Smithson, Mark W.
in
Adenoviruses
,
Algorithms
,
Allergy and Immunology
2018
•Transmissible vaccines can spread between hosts, increasing vaccination efficiency.•Recombinant transmissible vaccines (RTVs) are built from a vector virus and pathogen antigen.•If the vector is endemic, cross-immunity between the vector and vaccine hampers vaccine spread.•Vector-vaccine competition displaces vaccine unless supplemented with manual vaccination.•RTVs enhance effectiveness of vaccination programs if supplemented with manual vaccinations.
Transmissible vaccines have the potential to revolutionize infectious disease control by reducing the vaccination effort required to protect a population against a disease. Recent efforts to develop transmissible vaccines focus on recombinant transmissible vaccine designs (RTVs) because they pose reduced risk if intra-host evolution causes the vaccine to revert to its vector form. However, the shared antigenicity of the vaccine and vector may confer vaccine-immunity to hosts infected with the vector, thwarting the ability of the vaccine to spread through the population. We build a mathematical model to test whether a RTV can facilitate disease management in instances where reversion is likely to introduce the vector into the population or when the vector organism is already established in the host population, and the vector and vaccine share perfect cross-immunity. Our results show that a RTV can autonomously eradicate a pathogen, or protect a population from pathogen invasion, when cross-immunity between vaccine and vector is absent. If cross-immunity between vaccine and vector exists, however, our results show that a RTV can substantially reduce the vaccination effort necessary to control or eradicate a pathogen only when continuously augmented with direct manual vaccination. These results demonstrate that estimating the extent of cross-immunity between vector and vaccine is a critical step in RTV design, and that herpesvirus vectors showing facile reinfection and weak cross-immunity are promising.
Journal Article
Controlling epidemics with transmissible vaccines
by
Remien, Christopher H.
,
May, Ryan
,
Nuismer, Scott L.
in
Animal populations
,
Animals
,
Applied mathematics
2018
As the density of human and domestic animal populations increases, the threat of localized epidemics and global pandemics grows. Although effective vaccines have been developed for a number of threatening pathogens, manufacturing and disseminating vaccines in the face of a rapidly spreading epidemic or pandemic remains a formidable challenge. One potentially powerful solution to this problem is the use of transmissible vaccines. Transmissible vaccines are capable of spreading from one individual to another and are currently being developed for a range of infectious diseases. Here we develop and analyze mathematical models that allow us to quantify the benefits of vaccine transmission in the face of an imminent or ongoing epidemic. Our results demonstrate that even a small amount of vaccine transmission can greatly increase the rate at which a naïve host population can be protected against an anticipated epidemic and substantially reduce the size of unanticipated epidemics if vaccination is initiated shortly after pathogen detection. In addition, our results identify key biological properties and implementation practices that maximize the impact of vaccine transmission on infectious disease.
Journal Article