Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
22 result(s) for "Berghäuser, Gunnar"
Sort by:
Proposal for dark exciton based chemical sensors
The rapidly increasing use of sensors throughout different research disciplines and the demand for more efficient devices with less power consumption depends critically on the emergence of new sensor materials and novel sensor concepts. Atomically thin transition metal dichalcogenides have a huge potential for sensor development within a wide range of applications. Their optimal surface-to-volume ratio combined with strong light–matter interaction results in a high sensitivity to changes in their surroundings. Here, we present a highly efficient sensing mechanism to detect molecules based on dark excitons in these materials. We show that the presence of molecules with a dipole moment transforms dark states into bright excitons, resulting in an additional pronounced peak in easy accessible optical spectra. This effect exhibits a huge potential for sensor applications, since it offers an unambiguous optical fingerprint for the detection of molecules—in contrast to common sensing schemes relying on small peak shifts and intensity changes. Two-dimensional materials have shown great promise as efficient chemical sensors. Here, the authors present a sensing mechanism to allow the detection of molecules based on dark excitons in atomically thin transition metal dichalcogenides.
Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides
The band-edge optical response of transition metal dichalcogenides, an emerging class of atomically thin semiconductors, is dominated by tightly bound excitons localized at the corners of the Brillouin zone (valley excitons). A fundamental yet unknown property of valley excitons in these materials is the intrinsic homogeneous linewidth, which reflects irreversible quantum dissipation arising from system (exciton) and bath (vacuum and other quasiparticles) interactions and determines the timescale during which excitons can be coherently manipulated. Here we use optical two-dimensional Fourier transform spectroscopy to measure the exciton homogeneous linewidth in monolayer tungsten diselenide (WSe 2 ). The homogeneous linewidth is found to be nearly two orders of magnitude narrower than the inhomogeneous width at low temperatures. We evaluate quantitatively the role of exciton–exciton and exciton–phonon interactions and population relaxation as linewidth broadening mechanisms. The key insights reported here—strong many-body effects and intrinsically rapid radiative recombination—are expected to be ubiquitous in atomically thin semiconductors. The band-edge optical response of transition metal dichalcogenides is dominated by tightly bound valley excitons. Here, the authors use optical two-dimensional Fourier transform spectroscopy to determine the exciton homogeneous linewidth in monolayer tungsten diselenide.
Excitonic linewidth and coherence lifetime in monolayer transition metal dichalcogenides
Atomically thin transition metal dichalcogenides are direct-gap semiconductors with strong light–matter and Coulomb interactions. The latter accounts for tightly bound excitons, which dominate their optical properties. Besides the optically accessible bright excitons, these systems exhibit a variety of dark excitonic states. They are not visible in the optical spectra, but can strongly influence the coherence lifetime and the linewidth of the emission from bright exciton states. Here, we investigate the microscopic origin of the excitonic coherence lifetime in two representative materials (WS 2 and MoSe 2 ) through a study combining microscopic theory with spectroscopic measurements. We show that the excitonic coherence lifetime is determined by phonon-induced intravalley scattering and intervalley scattering into dark excitonic states. In particular, in WS 2 , we identify exciton relaxation processes involving phonon emission into lower-lying dark states that are operative at all temperatures. The interplay between dark and bright excitons has a significant impact on the optical properties of semiconducting transition metal dichalcogenides. Here, the authors perform computational and experimental studies which unveil the microscopic origin of the excitonic coherence lifetime in WS 2 and MoSe 2 .
Inverted valley polarization in optically excited transition metal dichalcogenides
Large spin–orbit coupling in combination with circular dichroism allows access to spin-polarized and valley-polarized states in a controlled way in transition metal dichalcogenides. The promising application in spin-valleytronics devices requires a thorough understanding of intervalley coupling mechanisms, which determine the lifetime of spin and valley polarizations. Here we present a joint theory–experiment study shedding light on the Dexter-like intervalley coupling. We reveal that this mechanism couples A and B excitonic states in different valleys, giving rise to an efficient intervalley transfer of coherent exciton populations. We demonstrate that the valley polarization vanishes and is even inverted for A excitons, when the B exciton is resonantly excited and vice versa. Our theoretical findings are supported by energy-resolved and valley-resolved pump-probe experiments and also provide an explanation for the recently measured up-conversion in photoluminescence. The gained insights might help to develop strategies to overcome the intrinsic limit for spin and valley polarizations. In atomically thin transition metal dichalcogenides, spin- and valley-polarised states can be addressed thanks to large spin–orbit coupling and circular dichroism. Here, the authors investigate theoretically and experimentally the decay dynamics of spin and valley polarisation in transition metal dichalcogenide monolayers.
The role of momentum-dark excitons in the elementary optical response of bilayer WSe2
Monolayer transition metal dichalcogenides (TMDs) undergo substantial changes in the single-particle band structure and excitonic optical response upon the addition of just one layer. As opposed to the single-layer limit, the bandgap of bilayer (BL) TMD semiconductors is indirect which results in reduced photoluminescence with richly structured spectra that have eluded a detailed understanding to date. Here, we provide a closed interpretation of cryogenic emission from BL WSe 2 as a representative material for the wider class of TMD semiconductors. By combining theoretical calculations with comprehensive spectroscopy experiments, we identify the crucial role of momentum-indirect excitons for the understanding of BL TMD emission. Our results shed light on the origin of quantum dot formation in BL crystals and will facilitate further advances directed at opto-electronic applications of layered TMD semiconductors in van der Waals heterostructures and devices. The electronic band structure of atomically thin transition metal dichalcogenides is strongly sensitive to the number of layers, resulting in modified light emission. Here, the authors investigate the cryogenic emission from bilayer WSe 2 to identify the role of momentum-indirect excitons for its optical response.
Proximity control of interlayer exciton-phonon hybridization in van der Waals heterostructures
Van der Waals stacking has provided unprecedented flexibility in shaping many-body interactions by controlling electronic quantum confinement and orbital overlap. Theory has predicted that also electron-phonon coupling critically influences the quantum ground state of low-dimensional systems. Here we introduce proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials, creating new electrically neutral hybrid eigenmodes. Specifically, we explore how the internal orbital 1 s -2 p transition of Coulomb-bound electron-hole pairs in monolayer tungsten diselenide resonantly hybridizes with lattice vibrations of a polar capping layer of gypsum, giving rise to exciton-phonon mixed eigenmodes, called excitonic Lyman polarons. Tuning orbital exciton resonances across the vibrational resonances, we observe distinct anticrossing and polarons with adjustable exciton and phonon compositions. Such proximity-induced hybridization can be further controlled by quantum designing the spatial wavefunction overlap of excitons and phonons, providing a promising new strategy to engineer novel ground states of two-dimensional systems. Here, the authors demonstrate proximity-controlled strong-coupling between Coulomb correlations and lattice dynamics in neighbouring van der Waals materials (WSe 2 and a gypsum layer), creating electrically neutral hybrid exciton-phonon eigenmodes called excitonic Lyman polarons .
Exciton Relaxation Cascade in two-dimensional Transition Metal Dichalcogenides
Monolayers of transition metal dichalcogenides (TMDs) are characterized by an extraordinarily strong Coulomb interaction giving rise to tightly bound excitons with binding energies of hundreds of meV. Excitons dominate the optical response as well as the ultrafast dynamics in TMDs. As a result, a microscopic understanding of exciton dynamics is the key for a technological application of these materials. In spite of this immense importance, elementary processes guiding the formation and relaxation of excitons after optical excitation of an electron-hole plasma has remained unexplored to a large extent. Here, we provide a fully quantum mechanical description of momentum- and energy-resolved exciton dynamics in monolayer molybdenum diselenide (MoSe 2 ) including optical excitation, formation of excitons, radiative recombination as well as phonon-induced cascade-like relaxation down to the excitonic ground state. Based on the gained insights, we reveal experimentally measurable features in pump-probe spectra providing evidence for the exciton relaxation cascade.
The role of momentum-dark excitons in the elementary optical response of bilayer WSe 2
Monolayer transition metal dichalcogenides (TMDs) undergo substantial changes in the single-particle band structure and excitonic optical response upon the addition of just one layer. As opposed to the single-layer limit, the bandgap of bilayer (BL) TMD semiconductors is indirect which results in reduced photoluminescence with richly structured spectra that have eluded a detailed understanding to date. Here, we provide a closed interpretation of cryogenic emission from BL WSe as a representative material for the wider class of TMD semiconductors. By combining theoretical calculations with comprehensive spectroscopy experiments, we identify the crucial role of momentum-indirect excitons for the understanding of BL TMD emission. Our results shed light on the origin of quantum dot formation in BL crystals and will facilitate further advances directed at opto-electronic applications of layered TMD semiconductors in van der Waals heterostructures and devices.
Analytical approach to excitonic properties of MoS2
We present an analytical investigation of the optical absorption spectrum of monolayer molybdenumdisulfide. Based on the density matrix formalism, our approach gives insights into the microscopic origin of excitonic transitions, their relative oscillator strength, and binding energy. We show analytical expressions for the carrier-light coupling element, which contains the optical selection rules and well describes the valleyselective polarization in MoS2. In agreement with experimental results, we find the formation of strongly bound electron-hole pairs due to the efficient Coulomb interaction. The absorption spectrum of MoS2 on a silicon substrate features two pronounced peaks at 1.91 eV and 2.05 eV corresponding to the A and B exciton, which are characterized by binding energies of 420 meV and 440 meV, respectively. Our calculations reveal their relative oscillator strength and predict the appearance of further low-intensity excitonic transitions at higher energies. The presented approach is applicable to other transition metal dichalcogenides and can be extended to investigations of trion and biexcitonic effects.
Dark-exciton based strain sensing in transition metal dichalcogenides
The trend towards ever smaller high-performance devices in modern technology requires novel materials with new functionalities. The recent emergence of atomically thin two-dimensional (2D) materials has opened up possibilities for the design of ultra-thin and flexible nanoelectronic devices. As truly 2D materials, they exhibit an optimal surface-to-volume ratio, which results in an extremely high sensitivity to external changes. This makes these materials optimal candidates for sensing applications. Here, we exploit the remarkably diverse exciton landscape in monolayer transition metal dichalcogenides to propose a novel dark-exciton-based concept for ultra sensitive strain sensors. We demonstrate that the dark-bright-exciton separation can be controlled by strain, which has a crucial impact on the activation of dark excitonic states. This results in a pronounced intensity change of dark excitons in photoluminescence spectra, when only 0.05 \\(\\%\\) strain is applied. The predicted extremely high optical gauge factors of up to 8000 are promising for the design of optical strain sensors.