Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
LanguageLanguage
-
SubjectSubject
-
Item TypeItem Type
-
DisciplineDiscipline
-
YearFrom:-To:
-
More FiltersMore FiltersIs Peer Reviewed
Done
Filters
Reset
8
result(s) for
"Bickley, Kris"
Sort by:
Classification of electrophysiological and morphological neuron types in the mouse visual cortex
2019
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To systematically profile morpho-electric properties of mammalian neurons, we established a single-cell characterization pipeline using standardized patch-clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly accessible online database, the Allen Cell Types Database, to display these datasets. Intrinsic physiological properties were measured from 1,938 neurons from the adult laboratory mouse visual cortex, morphological properties were measured from 461 reconstructed neurons, and 452 neurons had both measurements available. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We established a taxonomy of morphologically and electrophysiologically defined cell types for this region of the cortex, with 17 electrophysiological types, 38 morphological types and 46 morpho-electric types. There was good correspondence with previously defined transcriptomic cell types and subclasses using the same transgenic mouse lines.
Journal Article
An anatomic transcriptional atlas of human glioblastoma
by
Barnholtz-Sloan, Jill S.
,
Olson, Eric
,
Cimino, Patrick J.
in
Atlases as Topic
,
Brain
,
Brain cancer
2018
Glioblastoma is the most lethal form of human brain cancer. The genomic alterations and gene expression profiles characterizing this tumor type have been widely studied. Puchalski et al. created the Ivy Glioblastoma Atlas, a freely available online resource for the research community. The atlas, a collaborative effort between bioinformaticians and pathologists, maps molecular features of glioblastomas, such as transcriptional signatures, to histologically defined anatomical regions of the tumors. The relationships identified in this atlas, in conjunction with associated databases of clinical and genomic information, could provide new insights into the pathogenesis, diagnosis, and treatment of glioblastoma. Science , this issue p. 660 An online resource maps the molecular genetic features of glioblastoma, a lethal brain cancer, to its anatomic features. Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor’s molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
Journal Article
Inferring cortical function in the mouse visual system through large-scale systems neuroscience
by
Cain, Nicholas
,
Berg, Jim
,
Iyer, Ramakrishnan
in
Animals
,
Biological Sciences
,
COLLOQUIUM PAPER
2016
The scientific mission of the Project MindScope is to understand neocortex, the part of the mammalian brain that gives rise to perception, memory, intelligence, and consciousness. We seek to quantitatively evaluate the hypothesis that neocortex is a relatively homogeneous tissue, with smaller functional modules that perform a common computational function replicated across regions. We here focus on the mouse as a mammalian model organism with genetics, physiology, and behavior that can be readily studied and manipulated in the laboratory. We seek to describe the operation of cortical circuitry at the computational level by comprehensively cataloging and characterizing its cellular building blocks along with their dynamics and their cell type-specific connectivities. The project is also building large-scale experimental platforms (i.e., brain observatories) to record the activity of large populations of cortical neurons in behaving mice subject to visual stimuli. A primary goal is to understand the series of operations from visual input in the retina to behavior by observing and modeling the physical transformations of signals in the corticothalamic system. We here focus on the contribution that computer modeling and theory make to this long-term effort.
Journal Article
Connecting single-cell transcriptomes to projectomes in mouse visual cortex
2023
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we reconstructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic variations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.
Journal Article
Connecting single neuron transcriptomes to the projectome in mouse visual cortex
2023
The mammalian brain is composed of diverse neuron types that play different functional roles. Recent single-cell RNA sequencing approaches have led to a whole brain taxonomy of transcriptomically-defined cell types, yet cell type definitions that include multiple cellular properties can offer additional insights into a neuron's role in brain circuits. While the Patch-seq method can investigate how transcriptomic properties relate to the local morphological and electrophysiological properties of cell types, linking transcriptomic identities to long-range projections is a major unresolved challenge. To address this, we collected coordinated Patch-seq and whole brain morphology data sets of excitatory neurons in mouse visual cortex. From the Patch-seq data, we defined 16 integrated morpho-electric-transcriptomic (MET)-types; in parallel, we re- constructed the complete morphologies of 300 neurons. We unified the two data sets with a multi-step classifier, to integrate cell type assignments and interrogate cross-modality relationships. We find that transcriptomic vari- ations within and across MET-types correspond with morphological and electrophysiological phenotypes. In addition, this variation, along with the anatomical location of the cell, can be used to predict the projection targets of individual neurons. We also shed new light on infragranular cell types and circuits, including cell-type-specific, interhemispheric projections. With this approach, we establish a comprehensive, integrated taxonomy of excitatory neuron types in mouse visual cortex and create a system for integrated, high-dimensional cell type classification that can be extended to the whole brain and potentially across species.Competing Interest StatementThe authors have declared no competing interest.
Toward an integrated classification of neuronal cell types: morphoelectric and transcriptomic characterization of individual GABAergic cortical neurons
2020
Neurons are frequently classified into distinct groups or cell types on the basis of structural, physiological, or genetic attributes. To better constrain the definition of neuronal cell types, we characterized the transcriptomes and intrinsic physiological properties of over 3,700 GABAergic mouse visual cortical neurons and reconstructed the local morphologies of 350 of those neurons. We found that most transcriptomic types (t-types) occupy specific laminar positions within mouse visual cortex, and many of those t-types exhibit consistent electrophysiological and morphological features. We observed that these properties could vary continuously between t-types, which limited the ability to predict specific t-types from other data modalities. Despite that, the data support the presence of at least 20 interneuron met-types that have congruent morphological, electrophysiological, and transcriptomic properties.
Classification of electrophysiological and morphological types in mouse visual cortex
by
Egdorf, Tom
,
Harris, Julie
,
Williams, Grace
in
Biocytin
,
Brain slice preparation
,
Electric properties
2018
Understanding the diversity of cell types in the brain has been an enduring challenge and requires detailed characterization of individual neurons in multiple dimensions. To profile morpho-electric properties of mammalian neurons systematically, we established a single cell characterization pipeline using standardized patch clamp recordings in brain slices and biocytin-based neuronal reconstructions. We built a publicly-accessible online database, the Allen Cell Types Database, to display these data sets. Intrinsic physiological and morphological properties were measured from over 1,800 neurons from the adult laboratory mouse visual cortex. Quantitative features were used to classify neurons into distinct types using unsupervised methods. We establish a taxonomy of morphologically- and electrophysiologically-defined cell types for this region of cortex with 17 e-types and 35 m-types, as well as an initial correspondence with previously-defined transcriptomic cell types using the same transgenic mouse lines.