Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
8
result(s) for
"Biernaski, Heather"
Sort by:
Changes in myocardial blood flow in a canine model of left sided breast cancer radiotherapy
2023
Left-sided breast cancer patients receiving adjuvant radiotherapy are at risk for coronary artery disease, and/or radiation mediated effects on the microvasculature. Previously our laboratory demonstrated in canines with hybrid .sup.18 FDG/PET a progressive global inflammatory response during the initial one year following treatment. In this study, the objective is to evaluate corresponding changes in perfusion, in the same cohort, where resting myocardial blood flow (MBF) was quantitatively measured. In five canines, Ammonia PET (.sup.13 NH.sub.3) derived MBF was measured at baseline, 1-week, 1, 3, 6 and 12-months after cardiac external beam irradiation. MBF measurements were correlated with concurrent .sup.18 FDG uptake. Simultaneously MBF was measured using the dual bolus MRI method. MBF was significantly increased at all time points, in comparison to baseline, except at 3-months. This was seen globally throughout the entire myocardium independent of the coronary artery territories. MBF showed a modest significant correlation with .sup.18 FDG activity for the entire myocardium (r = 0.51, p = 0.005) including the LAD (r = 0.49, p = 0.008) and LCX (r = 0.47, p = 0.013) coronary artery territories. In this canine model of radiotherapy for left-sided breast cancer, resting MBF increases as early as 1-week and persists for up to one year except at 3-months. This pattern is similar to that of .sup.18 FDG uptake. A possible interpretation is that the increase in resting MBF is a response to myocardial inflammation.
Journal Article
Frugal and Translatable 15OO2 Production for Human Inhalation with Direct Delivery from the Cyclotron to a Hybrid PET/MR
by
Biernaski, Heather
,
Kovacs, Michael S.
,
Hicks, Justin W.
in
cerebral metabolic rate of oxygen
,
Gases
,
Good Manufacturing Practice
2024
Oxygen-15 (β+, t1/2 = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [15O]O2 over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.
Journal Article
Evaluation of 511 keV photon attenuation by a novel 32-channel phased array prospectively designed for cardiovascular hybrid PET/MRI imaging
2020
BackgroundSimultaneous cardiovascular imaging with positron emission tomography (PET) and magnetic resonance imaging (MRI) requires tools such as radio frequency (RF) phased arrays to achieve high temporal and spatial resolution in the MRI, as well as accurate quantification of PET. Today, high-density phased arrays (> 16 channels) used for cardiovascular PET/MRI are not designed to achieve low PET attenuation, and correcting the PET attenuation they cause requires off-line reconstruction, extra time and resources.PurposeMotivated by previous work assessing the MRI performance of a novel prospectively designed 32-channel phased array, this study assessed the PET image quality with this array in place. Guided by NEMA standards, PET performance was measured using global PET counts, regional background variation (BV), contrast recovery (CR) and contrast-to-noise ratio (CNR) for both the novel array and standard arrays (mMR 12-channel and MRI 32-channel). Nonattenuation-corrected (NAC) data from all arrays (and each part of the array) were processed and compared to no-array, and relative percentage difference (RPD) of the global means was estimated and reported for each part of the arrays. Attenuation correction (AC) of PET images (water in the phantom) using two approaches, MR-based AC map (MRAC) and dual-energy CT-based map (DCTAC), was performed, and RPD compared for each part of the arrays. Percent mean attenuation within regions of interests of the phantom images from each array were compared using a two-way analysis of variance (ANOVA).ResultsThe NAC data of the anterior part of the novel array recorded the least PET attenuation (≤ 2%); while the full novel array (anterior and posterior together) AC data, produced by MRAC and DCTAC approaches, recorded attenuation of 1.5 ± 2.9% and 0.0 ± 2.5%, respectively. The novel array PET count loss was significantly lower (p = 0.001) than those caused by the standard arrays.ConclusionsResults of this novel 32-channel cardiac array PET performance evaluation, together with its previously reported MRI performance assessment, suggest the novel array to be a strong alternative to the standard arrays currently used for cardiovascular hybrid PET/MRI imaging. It enables accurate PET quantification and high-temporal and spatial resolution for MR imaging.
Journal Article
Frugal and Translatable sup.15OOsub.2 Production for Human Inhalation with Direct Delivery from the Cyclotron to a Hybrid PET/MR
by
Biernaski, Heather
,
Hicks, Justin W
,
Kovacs, Michael S
in
Measurement
,
Production processes
,
Quality control
2024
Oxygen-15 (β+, t[sub.1/2] = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [[sup.15]O]O[sub.2] over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.
Journal Article
Frugal and Translatable 15 OO 2 Production for Human Inhalation with Direct Delivery from the Cyclotron to a Hybrid PET/MR
2024
Oxygen-15 (β+, t
= 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [
O]O
over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.
Journal Article
Frugal and Translatable 15OO2 Production for Human Inhalation with Direct Delivery from the Cyclotron to a Hybrid PET/MR
2024
Oxygen-15 (β+, t1/2 = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [15O]O2 over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.Oxygen-15 (β+, t1/2 = 122 s) radiolabeled diatomic oxygen, in conjunction with positron emission tomography, is the gold standard to quantitatively measure the metabolic rate of oxygen consumption in the living human brain. We present herein a protocol for safe and effective delivery of [15O]O2 over 200 m to a human subject for inhalation. A frugal quality control testing procedure was devised and validated. This protocol can act as a blueprint for other sites seeking to implement similar imaging programs.
Journal Article
The Effect of Registration on Voxel-Wise Tofts Model Parameters and Uncertainties from DCE-MRI of Early-Stage Breast Cancer Patients Using 3DSlicer
by
Gelman, Neil
,
Lock, Michael
,
Biernaski Heather
in
Breast cancer
,
Computing time
,
Cost function
2020
We quantitatively investigate the influence of image registration, using open-source software (3DSlicer), on kinetic analysis (Tofts model) of dynamic contrast enhanced MRI of early-stage breast cancer patients. We also show that registration computation time can be reduced by reducing the percent sampling (PS) of voxels used for estimation of the cost function. DCE-MRI breast images were acquired on a 3T-PET/MRI system in 13 patients with early-stage breast cancer who were scanned in a prone radiotherapy position. Images were registered using a BSpline transformation with a 2 cm isotropic grid at 100, 20, 5, 1, and 0.5PS (BRAINSFit in 3DSlicer). Signal enhancement curves were analyzed voxel-by-voxel using the Tofts kinetic model. Comparing unregistered with registered groups, we found a significant change in the 90th percentile of the voxel-wise distribution of Ktrans. We also found a significant reduction in the following: (1) in the standard error (uncertainty) of the parameter value estimation, (2) the number of voxel fits providing unphysical values for the extracellular-extravascular volume fraction (ve > 1), and (3) goodness of fit. We found no significant differences in the median of parameter value distributions (Ktrans, ve) between unregistered and registered images. Differences between parameters and uncertainties obtained using 100PS versus 20PS were small and statistically insignificant. As such, computation time can be reduced by a factor of 2, on average, by using 20PS while not affecting the kinetic fit. The methods outlined here are important for studies including a large number of post-contrast images or number of patient images.
Journal Article
Changes in myocardial blood flow in a canine model of left sided breast cancer radiotherapy
2023
BackgroundLeft-sided breast cancer patients receiving adjuvant radiotherapy are at risk for coronary artery disease, and/or radiation mediated effects on the microvasculature. Previously our laboratory demonstrated in canines with hybrid 18FDG/PET a progressive global inflammatory response during the initial one year following treatment. In this study, the objective is to evaluate corresponding changes in perfusion, in the same cohort, where resting myocardial blood flow (MBF) was quantitatively measured.MethodIn five canines, Ammonia PET (13NH3) derived MBF was measured at baseline, 1-week, 1, 3, 6 and 12-months after cardiac external beam irradiation. MBF measurements were correlated with concurrent 18FDG uptake. Simultaneously MBF was measured using the dual bolus MRI method.ResultsMBF was significantly increased at all time points, in comparison to baseline, except at 3-months. This was seen globally throughout the entire myocardium independent of the coronary artery territories. MBF showed a modest significant correlation with 18FDG activity for the entire myocardium (r = 0.51, p = 0.005) including the LAD (r = 0.49, p = 0.008) and LCX (r = 0.47, p = 0.013) coronary artery territories.ConclusionIn this canine model of radiotherapy for left-sided breast cancer, resting MBF increases as early as 1-week and persists for up to one year except at 3-months. This pattern is similar to that of 18FDG uptake. A possible interpretation is that the increase in resting MBF is a response to myocardial inflammation.
Journal Article