Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
127 result(s) for "Blumenthal, David B."
Sort by:
Exploring the SARS-CoV-2 virus-host-drug interactome for drug repurposing
Coronavirus Disease-2019 (COVID-19) is an infectious disease caused by the SARS-CoV-2 virus. Various studies exist about the molecular mechanisms of viral infection. However, such information is spread across many publications and it is very time-consuming to integrate, and exploit. We develop CoVex, an interactive online platform for SARS-CoV-2 host interactome exploration and drug (target) identification. CoVex integrates virus-human protein interactions, human protein-protein interactions, and drug-target interactions. It allows visual exploration of the virus-host interactome and implements systems medicine algorithms for network-based prediction of drug candidates. Thus, CoVex is a resource to understand molecular mechanisms of pathogenicity and to prioritize candidate therapeutics. We investigate recent hypotheses on a systems biology level to explore mechanistic virus life cycle drivers, and to extract drug repurposing candidates. CoVex renders COVID-19 drug research systems-medicine-ready by giving the scientific community direct access to network medicine algorithms. It is available at https://exbio.wzw.tum.de/covex/ . Information developed to understand the molecular mechanisms of SARS-CoV-2 infection for predicting drug repurposing candidates is time-consuming to integrate and explore. Here, the authors develop an interactive online platform for virus-host interactome exploration and drug (target) identification.
Data splitting to avoid information leakage with DataSAIL
Information leakage is an increasingly important topic in machine learning research for biomedical applications. When information leakage happens during a model’s training, it risks memorizing the training data instead of learning generalizable properties. This can lead to inflated performance metrics that do not reflect the actual performance at inference time. We present DataSAIL, a versatile Python package to facilitate leakage-reduced data splitting to enable realistic evaluation of machine learning models for biological data that are intended to be applied in out-of-distribution scenarios. DataSAIL is based on formulating the problem to find leakage-reduced data splits as a combinatorial optimization problem. We prove that this problem is NP-hard and provide a scalable heuristic based on clustering and integer linear programming. Finally, we empirically demonstrate DataSAIL’s impact on evaluating biomedical machine learning models. Data leakage undermines the reliability of machine learning model evaluations, particularly in biological data. Here, they present a data splitting approach that minimizes information leakage and enables more accurate assessment of model performance on out-of-distribution data.
Network medicine for disease module identification and drug repurposing with the NeDRex platform
Traditional drug discovery faces a severe efficacy crisis. Repurposing of registered drugs provides an alternative with lower costs and faster drug development timelines. However, the data necessary for the identification of disease modules, i.e. pathways and sub-networks describing the mechanisms of complex diseases which contain potential drug targets, are scattered across independent databases. Moreover, existing studies are limited to predictions for specific diseases or non-translational algorithmic approaches. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. We close this gap with NeDRex, an integrative and interactive platform for network-based drug repurposing and disease module discovery. NeDRex integrates ten different data sources covering genes, drugs, drug targets, disease annotations, and their relationships. NeDRex allows for constructing heterogeneous biological networks, mining them for disease modules, prioritizing drugs targeting disease mechanisms, and statistical validation. We demonstrate the utility of NeDRex in five specific use-cases. There is an unmet need for adaptable tools allowing biomedical researchers to employ network-based drug repurposing approaches for their individual use cases. Here, the authors close this gap with NeDRex, an integrative and interactive platform.
Cellular morphodynamics as quantifiers for functional states of resident tissue macrophages in vivo
Resident tissue macrophages (RTMs) are essential for tissue homeostasis. Their diverse functions, from monitoring interstitial fluids to clearing cellular debris, are accompanied by characteristic morphological changes that reflect their functional status. While current knowledge of macrophage behavior comes primarily from in vitro studies, their dynamic behavior in vivo is fundamentally different, necessitating a more physiologically relevant approach to their understanding. In this study, we employed intravital imaging to generate dynamic data from peritoneal RTMs in mice under various conditions and developed a comprehensive image processing pipeline to quantify RTM morphodynamics over time, defining human-interpretable cell size and shape features. These features allowed for the quantitative and qualitative differentiation of cell populations in various functional states, including pro- and anti-inflammatory activation and endosomal dysfunction. The study revealed that under steady-state conditions, RTMs exhibit a wide range of morphodynamical phenotypes, constituting a naïve morphospace of behavioral motifs. Upon challenge, morphodynamic patterns changed uniformly at the population level but predominantly within the constraints of this naïve morphospace. Notably, aged animals displayed a markedly shifted naïve morphospace, indicating drastically different behavioral patterns compared to their young counterparts. The developed method also proved valuable in optimizing explanted tissue setups, bringing RTM behavior closer to the physiological native state. Our versatile approach thus provides novel insights into the dynamic behavior of bona fide macrophages in vivo , enabling the distinction between physiological and pathological cell states and the assessment of functional tissue age on a population level.
The AIMe registry for artificial intelligence in biomedical research
We present the AIMe registry, a community-driven reporting platform for AI in biomedicine. It aims to enhance the accessibility, reproducibility and usability of biomedical AI models, and allows future revisions by the community.
Lacking mechanistic disease definitions and corresponding association data hamper progress in network medicine and beyond
A long-term objective of network medicine is to replace our current, mainly phenotype-based disease definitions by subtypes of health conditions corresponding to distinct pathomechanisms. For this, molecular and health data are modeled as networks and are mined for pathomechanisms. However, many such studies rely on large-scale disease association data where diseases are annotated using the very phenotype-based disease definitions the network medicine field aims to overcome. This raises the question to which extent the biases mechanistically inadequate disease annotations introduce in disease association data distort the results of studies which use such data for pathomechanism mining. We address this question using global- and local-scale analyses of networks constructed from disease association data of various types. Our results indicate that large-scale disease association data should be used with care for pathomechanism mining and that analyses of such data should be accompanied by close-up analyses of molecular data for well-characterized patient cohorts. Large-scale disease-association data are widely used for pathomechanism mining, even if disease definitions used for annotation are mostly phenotype-based. Here, the authors show that this bias can lead to a blurred view on disease mechanisms, highlighting the need for close-up studies based on molecular data for well-characterized patient cohorts.
Flimma: a federated and privacy-aware tool for differential gene expression analysis
Aggregating transcriptomics data across hospitals can increase sensitivity and robustness of differential expression analyses, yielding deeper clinical insights. As data exchange is often restricted by privacy legislation, meta-analyses are frequently employed to pool local results. However, the accuracy might drop if class labels are inhomogeneously distributed among cohorts. Flimma ( https://exbio.wzw.tum.de/flimma/ ) addresses this issue by implementing the state-of-the-art workflow limma voom in a federated manner, i.e., patient data never leaves its source site. Flimma results are identical to those generated by limma voom on aggregated datasets even in imbalanced scenarios where meta-analysis approaches fail.
On the role of network topology in German-Jewish recommendation letter networks in the early twentieth century
Recommendation letters were an important instrument for orchestrating Jewish emigration from Germany in the late nineteenth and early twentieth century. Here, we present network-based analyses of manually collected meta-data from recommendation letters targeted at the Hebrew University (HU) in Jerusalem. Using standard semi-supervised node classification techniques and differential node centrality analyses, we show that the position of a recommendation letter in content-agnostic recommendation network models is predictive of its success, i.e., of whether or not the letter led to the recommendee obtaining a position at the HU. In particular, we show that authors of successful recommendation letters assume more central positions within the networks than authors of unsuccessful letters, while the opposite holds for the recommendation letters’ receivers. Beyond our application, these results showcase the potential of using network models for generating historical insights. Both the letter meta-data records and Python code to reproduce our analyses are available on GitHub: https://github.com/bionetslab/corrnet .
Emergence of power law distributions in protein-protein interaction networks through study bias
Degree distributions in protein-protein interaction (PPI) networks are believed to follow a power law (PL). However, technical and study biases affect the experimental procedures for detecting PPIs. For instance, cancer-associated proteins have received disproportional attention. Moreover, bait proteins in large-scale experiments tend to have many false-positive interaction partners. Studying the degree distributions of thousands of PPI networks of controlled provenance, we address the question if PL distributions in observed PPI networks could be explained by these biases alone. Our findings are supported by mathematical models and extensive simulations, and indicate that study bias and technical bias suffice to produce the observed PL distribution. It is, hence, problematic to derive hypotheses about the topology of the true biological interactome from the PL distributions in observed PPI networks. Our study casts doubt on the use of the PL property of biological networks as a modeling assumption or quality criterion in network biology.
The specific DNA methylation landscape in focal cortical dysplasia ILAE type 3D
Focal Cortical Dysplasia (FCD) is a frequent cause of drug-resistant focal epilepsy in children and young adults. The international FCD classifications of 2011 and 2022 have identified several clinico-pathological subtypes, either occurring isolated, i.e., FCD ILAE Type 1 or 2, or in association with a principal cortical lesion, i.e., FCD Type 3. Here, we addressed the DNA methylation signature of a previously described new subtype of FCD 3D occurring in the occipital lobe of very young children and microscopically defined by neuronal cell loss in cortical layer 4. We studied the DNA methylation profile using 850 K BeadChip arrays in a retrospective cohort of 104 patients with FCD 1 A, 2 A, 2B, 3D, TLE without FCD, and 16 postmortem specimens without neurological disorders as controls, operated in China or Germany. DNA was extracted from formalin-fixed paraffin-embedded tissue blocks with microscopically confirmed lesions, and DNA methylation profiles were bioinformatically analyzed with a recently developed deep learning algorithm. Our results revealed a distinct position of FCD 3D in the DNA methylation map of common FCD subtypes, also different from non-FCD epilepsy surgery controls or non-epileptic postmortem controls. Within the FCD 3D cohort, the DNA methylation signature separated three histopathology subtypes, i.e., glial scarring around porencephalic cysts, loss of layer 4, and Rasmussen encephalitis. Differential methylation in FCD 3D with loss of layer 4 mapped explicitly to biological pathways related to neurodegeneration, biogenesis of the extracellular matrix (ECM) components, axon guidance, and regulation of the actin cytoskeleton. Our data suggest that DNA methylation signatures in cortical malformations are not only of diagnostic value but also phenotypically relevant, providing the molecular underpinnings of structural and histopathological features associated with epilepsy. Further studies will be necessary to confirm these results and clarify their functional relevance and epileptogenic potential in these difficult-to-treat children.