Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Language
      Language
      Clear All
      Language
  • Subject
      Subject
      Clear All
      Subject
  • Item Type
      Item Type
      Clear All
      Item Type
  • Discipline
      Discipline
      Clear All
      Discipline
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
15 result(s) for "Boe, Andrew F."
Sort by:
An anatomically comprehensive atlas of the adult human brain transcriptome
Neuroanatomically precise, genome-wide maps of transcript distributions are critical resources to complement genomic sequence data and to correlate functional and genetic brain architecture. Here we describe the generation and analysis of a transcriptional atlas of the adult human brain, comprising extensive histological analysis and comprehensive microarray profiling of ∼900 neuroanatomically precise subdivisions in two individuals. Transcriptional regulation varies enormously by anatomical location, with different regions and their constituent cell types displaying robust molecular signatures that are highly conserved between individuals. Analysis of differential gene expression and gene co-expression relationships demonstrates that brain-wide variation strongly reflects the distributions of major cell classes such as neurons, oligodendrocytes, astrocytes and microglia. Local neighbourhood relationships between fine anatomical subdivisions are associated with discrete neuronal subtypes and genes involved with synaptic transmission. The neocortex displays a relatively homogeneous transcriptional pattern, but with distinct features associated selectively with primary sensorimotor cortices and with enriched frontal lobe expression. Notably, the spatial topography of the neocortex is strongly reflected in its molecular topography—the closer two cortical regions, the more similar their transcriptomes. This freely accessible online data resource forms a high-resolution transcriptional baseline for neurogenetic studies of normal and abnormal human brain function. Laser microdissection and microarrays are used to assess 900 precise subdivisions of the brains from three healthy men with 60,000 gene expression probes; the resulting atlas allows comparisons between humans and other animals, and will facilitate studies of human neurological and psychiatric diseases. Atlas of the brain High-resolution maps of genome-wide gene expression have been available for mice for a few years, but only relatively coarse equivalents have been published for the human brain because of the challenges presented by the 1,000-fold increase in size and the limited availability and quality of postmortem tissue. Now Michael Hawrylycz and colleagues at the Allen Institute for Brain Science in Seattle, Washington, have used laser microdissection and microarrays to assess 900 precise subdivisions in brains from two healthy men with 60,000 gene-expression probes. The resulting atlas, freely available at www.brain-map.org, allows comparisons between humans and other animals, and will facilitate studies of human neurological and psychiatric diseases. One early observation from the data is a human-specific pattern — compared with the mouse and rhesus monkey — for the calcium-binding protein CALB1 in the hippocampus.
Divergent and nonuniform gene expression patterns in mouse brain
Considerable progress has been made in understanding variations in gene sequence and expression level associated with phenotype, yet how genetic diversity translates into complex phenotypic differences remains poorly understood. Here, we examine the relationship between genetic background and spatial patterns of gene expression across seven strains of mice, providing the most extensive cellular-resolution comparative analysis of gene expression in the mammalian brain to date. Using comprehensive brain-wide anatomic coverage (more than 200 brain regions), we applied in situ hybridization to analyze the spatial expression patterns of 49 genes encoding well-known pharmaceutical drug targets. Remarkably, over 50% of the genes examined showed interstrain expression variation. In addition, the variability was nonuniformly distributed across strain and neuroanatomic region, suggesting certain organizing principles. First, the degree of expression variance among strains mirrors genealogic relationships. Second, expression pattern differences were concentrated in higher-order brain regions such as the cortex and hippocampus. Divergence in gene expression patterns across the brain could contribute significantly to variations in behavior and responses to neuroactive drugs in laboratory mouse strains and may help to explain individual differences in human responsiveness to neuroactive drugs.
An anatomic transcriptional atlas of human glioblastoma
Glioblastoma is the most lethal form of human brain cancer. The genomic alterations and gene expression profiles characterizing this tumor type have been widely studied. Puchalski et al. created the Ivy Glioblastoma Atlas, a freely available online resource for the research community. The atlas, a collaborative effort between bioinformaticians and pathologists, maps molecular features of glioblastomas, such as transcriptional signatures, to histologically defined anatomical regions of the tumors. The relationships identified in this atlas, in conjunction with associated databases of clinical and genomic information, could provide new insights into the pathogenesis, diagnosis, and treatment of glioblastoma. Science , this issue p. 660 An online resource maps the molecular genetic features of glioblastoma, a lethal brain cancer, to its anatomic features. Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor’s molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment.
Genome-wide atlas of gene expression in the adult mouse brain
Molecular approaches to understanding the functional circuitry of the nervous system promise new insights into the relationship between genes, brain and behaviour. The cellular diversity of the brain necessitates a cellular resolution approach towards understanding the functional genomics of the nervous system. We describe here an anatomically comprehensive digital atlas containing the expression patterns of ∼20,000 genes in the adult mouse brain. Data were generated using automated high-throughput procedures for in situ hybridization and data acquisition, and are publicly accessible online. Newly developed image-based informatics tools allow global genome-scale structural analysis and cross-correlation, as well as identification of regionally enriched genes. Unbiased fine-resolution analysis has identified highly specific cellular markers as well as extensive evidence of cellular heterogeneity not evident in classical neuroanatomical atlases. This highly standardized atlas provides an open, primary data resource for a wide variety of further studies concerning brain organization and function. Brain bank A new frontier has been reached in both neuroscience and genetics. The expression of each of the roughly 22,000 genes of the mouse genome has been mapped, at cellular resolution, across all major structures of the mouse brain. This achievement is part of the Allen Brain Atlas project. Lein et al . describe the development of the atlas (freely available on http://www.brain-map.org ) and report gene expression patterns that both support and challenge established views of brain anatomy. The atlas includes in situ images and 'heat maps' of signal intensity for each gene and brain region on a colorimetric scale. Despite predictions that the brain would express a limited number of genes, about 80% of all mouse genes are expressed; 70% of gene signals localize to fewer than 20% of all brain cells, suggesting that most localize to small brain regions. Cover image: Chris Lau, Allen Institute for Brain Science. The expression of each of the roughly 22,000 genes of the mouse genome has been mapped, at cellular resolution, across all major structures of the mouse brain, revealing that 80% of all genes appear to be expressed in the brain.
Assessing the Cost of Global Biodiversity and Conservation Knowledge
Knowledge products comprise assessments of authoritative information supported by standards, governance, quality control, data, tools, and capacity building mechanisms. Considerable resources are dedicated to developing and maintaining knowledge products for biodiversity conservation, and they are widely used to inform policy and advise decision makers and practitioners. However, the financial cost of delivering this information is largely undocumented. We evaluated the costs and funding sources for developing and maintaining four global biodiversity and conservation knowledge products: The IUCN Red List of Threatened Species, the IUCN Red List of Ecosystems, Protected Planet, and the World Database of Key Biodiversity Areas. These are secondary data sets, built on primary data collected by extensive networks of expert contributors worldwide. We estimate that US$160 million (range: US$116-204 million), plus 293 person-years of volunteer time (range: 278-308 person-years) valued at US$ 14 million (range US$12-16 million), were invested in these four knowledge products between 1979 and 2013. More than half of this financing was provided through philanthropy, and nearly three-quarters was spent on personnel costs. The estimated annual cost of maintaining data and platforms for three of these knowledge products (excluding the IUCN Red List of Ecosystems for which annual costs were not possible to estimate for 2013) is US$6.5 million in total (range: US$6.2-6.7 million). We estimated that an additional US$114 million will be needed to reach pre-defined baselines of data coverage for all the four knowledge products, and that once achieved, annual maintenance costs will be approximately US$12 million. These costs are much lower than those to maintain many other, similarly important, global knowledge products. Ensuring that biodiversity and conservation knowledge products are sufficiently up to date, comprehensive and accurate is fundamental to inform decision-making for biodiversity conservation and sustainable development. Thus, the development and implementation of plans for sustainable long-term financing for them is critical.