Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
9 result(s) for "Brualla, Lorenzo"
Sort by:
Treatment verification using Varian’s dynalog files in the Monte Carlo system PRIMO
Background The PRIMO system is a computer software that allows the Monte Carlo simulation of linear accelerators and the estimation of the subsequent absorbed dose distributions in phantoms and computed tomographies. The aim of this work is to validate the methods incorporated in PRIMO to evaluate the deviations introduced in the dose distributions by errors in the positioning of the leaves of the multileaf collimator recorded in the dynalog files during patient treatment. Methods The reconstruction of treatment plans from Varian’s dynalog files was implemented in the PRIMO system. Dose distributions were estimated for volumetric-modulated arc therapy clinical cases of prostate and head&neck using the PRIMO fast Monte Carlo engine DPM. Accuracy of the implemented reconstruction methods was evaluated by comparing dose distributions obtained from the simulations of the plans imported from the treatment planning system with those obtained from the simulations of the plans reconstructed from the expected leaves positions recorded in the dynalog files. The impact on the dose of errors in the positions of the leaves was evaluated by comparing dose distributions estimated for plans reconstructed from expected leaves positions with dose distributions estimated from actual leaves positions. Gamma pass rate ( GPR ), a hereby introduced quantity named percentage of agreement ( PA ) and the percentage of voxels with a given systematic difference ( α / Δ ) were the quantities used for the comparisons. Errors were introduced in leaves positions in order to study the sensitivity of these quantities. Results A good agreement of the dose distributions obtained from the plan imported from the TPS and from the plan reconstructed from expected leaves positions was obtained. Not a significantly better agreement was obtained for an imported plan with an increased number of control points such as to approximately match the number of records in the dynalogs. When introduced errors were predominantly in one direction, the methods employed in this work were sensitive to dynalogs with root-mean-square errors ( RMS ) ≥0.2 mm. Nevertheless, when errors were in both directions, only RMS >1.2 mm produced detectable deviations in the dose. The PA and the α / Δ showed more sensitive to errors in the leaves positions than the GPR . Conclusions Methods to verify the accuracy of the radiotherapy treatment from the information recorded in the Varian’s dynalog files were implemented and verified in this work for the PRIMO system. Tolerance limits could be established based on the values of PA and α / Δ . GPR 3,3 is not recommended as a solely evaluator of deviations introduced in the dose by errors captured in the dynalog files.
Monte Carlo simulation of the Varian TrueBeam flattened-filtered beams using a surrogate geometry in PRIMO
Background Monte Carlo simulation of radiation transport for medical linear accelerators (linacs) requires accurate knowledge of the geometrical description of the linac head. Since the geometry of Varian TrueBeam machines has not been disclosed, the manufacturer distributes phase-space files of the linac patient-independent part to allow researchers to compute absorbed dose distributions using the Monte Carlo method. This approach limits the possibility of achieving an arbitrarily small statistical uncertainty. This work investigates the use of the geometry of the Varian Clinac 2100, which is included in the Monte Carlo system PRIMO, as a surrogate. Methods Energy, radial and angular distributions extracted from the TrueBeam phase space files published by the manufacturer and from phase spaces tallied with PRIMO for the Clinac 2100 were compared for the 6, 8, 10 and 15 MV flattened-filtered beams. Dose distributions in water computed for the two sets of PSFs were compared with the Varian Representative Beam Data (RBD) for square fields with sides ranging from 3 to 30 cm. Output factors were calculated for square fields with sides ranging from 2 to 40 cm. Results Excellent agreement with the RBD was obtained for the simulations that employed the phase spaces distributed by Varian as well as for those that used the surrogate geometry, reaching in both cases Gamma ( 2 % , 2 mm) pass rates larger than 99 % , except for the 15 MV surrogate. This result supports previous investigations that suggest a change in the material composition of the TrueBeam 15 MV flattening filter. In order to get the said agreement, PRIMO simulations were run using enlarged transport parameters to compensate the discrepancies between the actual and surrogate geometries. Conclusions This work sustains the claim that the simulation of the 6, 8 and 10 MV flattening-filtered beams of the TrueBeam linac can be performed using the Clinac 2100 model of PRIMO without significant loss of accuracy.
PENELOPE/PRIMO-calculated photon and electron spectra from clinical accelerators
Background The availability of photon and electron spectra in digital form from current accelerators and Monte Carlo (MC) systems is scarce, and one of the packages widely used refers to linacs with a reduced clinical use nowadays. Such spectra are mainly intended for the MC calculation of detector-related quantities in conventional broad beams, where the use of detailed phase-space files (PSFs) is less critical than for MC-based treatment planning applications, but unlike PSFs, spectra can easily be transferred to other computer systems and users. Methods A set of spectra for a range of Varian linacs has been calculated using the PENELOPE/PRIMO MC system. They have been extracted from PSFs tallied for field sizes of 10 cm × 10 cm and 15 cm × 15 cm for photon and electron beams, respectively. The influence of the spectral bin width and of the beam central axis region used to extract the spectra have been analyzed. Results Spectra have been compared to those by other authors showing good agreement with those obtained using the, now superseded, EGS4/BEAM MC code, but significant differences with the most widely used photon data set. Other spectra, particularly for electron beams, have not been published previously for the machines simulated in this work. The influence of the bin width on the spectrum mean energy for 6 and 10 MV beams has been found to be negligible. The size of the region used to extract the spectra yields differences of up to 40% for the mean energies in 10 MV beams, but the maximum difference for TPR 20,10 values derived from depth-dose distributions does not exceed 2% relative to those obtained using the PSFs. This corresponds to k Q differences below 0.2% for a typical Farmer-type chamber, considered to be negligible for reference dosimetry. Different configurations for using electron spectra have been compared for 6 MeV beams, concluding that the geometry used for tallying the PSFs used to extract the spectra must be accounted for in subsequent calculations using the spectra as a source. Conclusions An up-to-date set of consistent spectra for Varian accelerators suitable for the calculation of detector-related quantities in conventional broad beams has been developed and made available in digital form.
DPM as a radiation transport engine for PRIMO
Background PRIMO is a dose verification system based on the general-purpose Monte Carlo radiation transport code penelope , which implements an accurate physics model of the interaction cross sections and the radiation transport process but with low computational efficiency as compared with fast Monte Carlo codes. One of these fast Monte Carlo codes is the Dose Planning Method (DPM). The purpose of this work is to describe the adaptation of DPM as an alternative PRIMO computation engine, to validate its performance against penelope and to validate it for some specific cases. Methods DPM was parallelized and modified to perform radiation transport in quadric geometries, which are used to describe linacs, thus allowing the simulation of dynamic treatments. To benchmark the new code versus penelope , both in terms of accuracy of results and simulation time, several tests were performed, namely, irradiation of a multi-layer phantom, irradiation of a water phantom using a collimating pattern defined by the multileaf collimator (MLC), and four clinical cases. The gamma index, with passing criteria of 1 mm/1%, was used to compare the absorbed dose distributions. Clinical cases were compared using a 3-D gamma analysis. Results The percentage of voxels passing the gamma criteria always exceeded 99% for the phantom cases, with the exception of the transport through air, for which dose differences between DPM and penelope were as large as 24%. The corresponding percentage for the clinical cases was larger than 99%. The speedup factor between DPM and penelope ranged from 2.5 ×, for the simulation of the radiation transport through a MLC and the subsequent dose estimation in a water phantom, up to 11.8 × for a lung treatment. A further increase of the computational speed, up to 25 ×, can be obtained in the clinical cases when a voxel size of (2.5 mm) 3 is used. Conclusions DPM has been incorporated as an efficient and accurate Monte Carlo engine for dose estimation in PRIMO. It allows the concatenated simulation of the patient-dependent part of the linac and the patient geometry in static and dynamic treatments. The discrepancy observed between DPM and penelope , which is due to an artifact of the cross section interpolation algorithm for low energy electrons in air, does not affect the results in other materials.
PRIMO: A graphical environment for the Monte Carlo simulation of Varian and Elekta linacs
Background The accurate Monte Carlo simulation of a linac requires a detailed description of its geometry and the application of elaborate variance-reduction techniques for radiation transport. Both tasks entail a substantial coding effort and demand advanced knowledge of the intricacies of the Monte Carlo system being used. Methods PRIMO, a new Monte Carlo system that allows the effortless simulation of most Varian and Elekta linacs, including their multileaf collimators and electron applicators, is introduced. PRIMO combines (1) accurate physics from the PENELOPE code, (2) dedicated variance-reduction techniques that significantly reduce the computation time, and (3) a user-friendly graphical interface with tools for the analysis of the generated data. PRIMO can tally dose distributions in phantoms and computerized tomographies, handle phase-space files in IAEA format, and import structures (planning target volumes, organs at risk) in the DICOM RT-STRUCT standard. Results A prostate treatment, conformed with a high definition Millenium multileaf collimator (MLC 120HD) from a Varian Clinac 2100 C/D, is presented as an example. The computation of the dose distribution in 1.86 × 3.00 × 1.86 mm 3 voxels with an average 2 % standard statistical uncertainty, performed on an eight-core Intel Xeon at 2.67 GHz, took 1.8 h—excluding the patient-independent part of the linac, which required 3.8 h but it is simulated only once. Conclusion PRIMO is a self-contained user-friendly system that facilitates the Monte Carlo simulation of dose distributions produced by most currently available linacs. This opens the door for routine use of Monte Carlo in clinical research and quality assurance purposes. It is free software that can be downloaded from http://www.primoproject.net.
Health effects of ionising radiation in paediatrics undergoing either cardiac fluoroscopy or modern radiotherapy (The HARMONIC project)
The use of ionising radiation (IR) for medical diagnosis and treatment procedures has had a major impact on the survival of paediatric patients. Although the benefits of these techniques lead to efficient health care, evaluation of potential associated long-term health effects is required. HARMONIC aims to better understand the increased risk of cancer and non-cancer effects after exposure to medical IR in children with cancer treated with modern external beam radiotherapy (EBRT) – radiation energy in MeV range – and in children with cardiac defects diagnosed and treated with cardiac fluoroscopy procedures (CFP) – radiation energy in keV range. The project investigates, among survivors of paediatric cancer, potential endocrine dysfunction, cardiovascular and neurovascular damage, health-related quality of life and second (and subsequent) primary cancer (SPC). The cardiac component builds a pooled cohort of approximately 90 000 paediatric patients who underwent CFP during childhood and adolescence to investigate cancer risk following exposure to IR and explore the potential effects of conditions predisposing to cancer. HARMONIC develops software tools to allow dose reconstruction in both EBRT and CFP to enable epidemiological investigations and future optimisation of treatments. With the creation of a biobank of blood and saliva samples, HARMONIC aims to provide a mechanistic understanding of radiation-induced adverse health effects and identify potential biomarkers that can predict these effects.
Monte Carlo Simulations Applied to Conjunctival Lymphoma Radiotherapy Treatment
Introduction: Small radiation fields are increasingly applied in clinical routine. In particular, they are necessary for the treat-ment of eye tumors. However, available treatment planning systems do not calculate the absorbed dose with the desired accuracy in the presence of small fields. Absorbed dose estimations obtained with Monte Carlo methods have the required accuracy for clinical applications, but the exceedingly long computation times associated with them hinder their routine use. In this article, a code for automatic Monte Carlo simulation of linacs and an application in the treatment of conjunctival lym-phoma are presented. Methods: Simulations of clinical linear accelerators were performed with the general-purpose radiation transport Monte Carlo code penelope. Accelerator geometry files, in electron mode, were generated with the program AutolinaC. Results: The Monte Carlo simulation of an annular electron 6 MeV field used for the treatment of the conjunctival lymphoma yielded absorbed dose results statistically compatible with experimental measurements. In this simulation, 2% standard statistical uncertainty was reached in the same time employed by a hybrid Monte Carlo commercial code (eMC); however, eMC showed discrepancies of up to 7% on the absorbed dose with respect to experimental data. Results obtained with the analytic algorithm Pencil Beam Convolution differed from experimental data by 10% for this case. Conclusion: Owing to the systematic application of variance-reduction techniques, it is possible to accurately estimate the absorbed dose in patient images, using Monte Carlo methods, in times within clinical routine requirements. The program AutolinaC allows systematic use of these variance-reduction techniques within the code penelope.
A geometrical model for the Monte Carlo simulation of the TrueBeam linac
Monte Carlo (MC) simulation of linacs depends on the accurate geometrical description of the head. The geometry of the Varian TrueBeam (TB) linac is not available to researchers. Instead, the company distributes phase-space files (PSFs) of the flattening-filter-free (FFF) beams tallied upstream the jaws. Yet, MC simulations based on third party tallied PSFs are subject to limitations. We present an experimentally-based geometry developed for the simulation of the FFF beams of the TB linac. The upper part of the TB linac was modeled modifying the Clinac 2100 geometry. The most important modification is the replacement of the standard flattening filters by ad hoc thin filters which were modeled by comparing dose measurements and simulations. The experimental dose profiles for the 6MV and 10MV FFF beams were obtained from the Varian Golden Data Set and from in-house measurements for radiation fields ranging from 3X3 to 40X40 cm2. Indicators of agreement between the experimental data and the simulation results obtained with the proposed geometrical model were the dose differences, the root-mean-square error and the gamma index. The same comparisons were done for dose profiles obtained from MC simulations using the second generation of PSFs distributed by Varian for the TB linac. Results of comparisons show a good agreement of the dose for the ansatz geometry similar to that obtained for the simulations with the TB PSFs for all fields considered, except for the 40X40 cm2 field where the ansatz geometry was able to reproduce the measured dose more accurately. Our approach makes possible to: (i) adapt the initial beam parameters to match measured dose profiles; (ii) reduce the statistical uncertainty to arbitrarily low values; and (iii) assess systematic uncertainties by employing different MC codes.
Monte Carlo systems used for treatment planning and dose verification
General-purpose radiation transport Monte Carlo codes have been used for estimation of the absorbed dose distribution in external photon and electron beam radiotherapy patients since several decades. Results obtained with these codes are usually more accurate than those provided by treatment planning systems based on non-stochastic methods. Traditionally, absorbed dose computations based on general-purpose Monte Carlo codes have been used only for research, owing to the difficulties associated with setting up a simulation and the long computation time required. To take advantage of radiation transport Monte Carlo codes applied to routine clinical practice, researchers and private companies have developed treatment planning and dose verification systems that are partly or fully based on fast Monte Carlo algorithms. This review presents a comprehensive list of the currently existing Monte Carlo systems that can be used to calculate or verify an external photon and electron beam radiotherapy treatment plan. Particular attention is given to those systems that are distributed, either freely or commercially, and that do not require programming tasks from the end user. These systems are compared in terms of features and the simulation time required to compute a set of benchmark calculations.