Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
17 result(s) for "Camarda, Roman"
Sort by:
Comprehensive analysis of normal adjacent to tumor transcriptomes
Histologically normal tissue adjacent to the tumor (NAT) is commonly used as a control in cancer studies. However, little is known about the transcriptomic profile of NAT, how it is influenced by the tumor, and how the profile compares with non-tumor-bearing tissues. Here, we integrate data from the Genotype-Tissue Expression project and The Cancer Genome Atlas to comprehensively analyze the transcriptomes of healthy, NAT, and tumor tissues in 6506 samples across eight tissues and corresponding tumor types. Our analysis shows that NAT presents a unique intermediate state between healthy and tumor. Differential gene expression and protein–protein interaction analyses reveal altered pathways shared among NATs across tissue types. We characterize a set of 18 genes that are specifically activated in NATs. By applying pathway and tissue composition analyses, we suggest a pan-cancer mechanism of pro-inflammatory signals from the tumor stimulates an inflammatory response in the adjacent endothelium. Normal tissue adjacent to the tumour (NAT) is often used as a control in cancer studies. Here, the authors analyse across cancer types the transcriptomes of healthy, NAT, and tumour tissues, and find that NAT presents a unique state, potentially due to inflammatory response of the NAT to the tumour tissue.
Inhibition of fatty acid oxidation as a therapy for MYC-overexpressing triple-negative breast cancer
In the triple-negative subtype of breast cancer, for which treatment options are limited, overexpression of the MYC oncoprotein is associated with increased sensitivity to growth inhibition by fatty acid oxidation inhibitors, thus pointing to a new therapeutic strategy. Expression of the oncogenic transcription factor MYC is disproportionately elevated in triple-negative breast cancer (TNBC), as compared to estrogen receptor–, progesterone receptor– or human epidermal growth factor 2 receptor–positive (RP) breast cancer 1 , 2 . We and others have shown that MYC alters metabolism during tumorigenesis 3 , 4 . However, the role of MYC in TNBC metabolism remains mostly unexplored. We hypothesized that MYC-dependent metabolic dysregulation is essential for the growth of MYC-overexpressing TNBC cells and may identify new therapeutic targets for this clinically challenging subset of breast cancer. Using a targeted metabolomics approach, we identified fatty acid oxidation (FAO) intermediates as being dramatically upregulated in a MYC-driven model of TNBC. We also identified a lipid metabolism gene signature in patients with TNBC that were identified from The Cancer Genome Atlas database and from multiple other clinical data sets, implicating FAO as a dysregulated pathway that is critical for TNBC cell metabolism. We found that pharmacologic inhibition of FAO catastrophically decreased energy metabolism in MYC-overexpressing TNBC cells and blocked tumor growth in a MYC-driven transgenic TNBC model and in a MYC-overexpressing TNBC patient–derived xenograft. These findings demonstrate that MYC-overexpressing TNBC shows an increased bioenergetic reliance on FAO and identify the inhibition of FAO as a potential therapeutic strategy for this subset of breast cancer.
Global Metabolic Profiling of Infection by an Oncogenic Virus: KSHV Induces and Requires Lipogenesis for Survival of Latent Infection
Like cancer cells, virally infected cells have dramatically altered metabolic requirements. We analyzed global metabolic changes induced by latent infection with an oncogenic virus, Kaposi's Sarcoma-associated herpesvirus (KSHV). KSHV is the etiologic agent of Kaposi's Sarcoma (KS), the most common tumor of AIDS patients. Approximately one-third of the nearly 200 measured metabolites were altered following latent infection of endothelial cells by KSHV, including many metabolites of anabolic pathways common to most cancer cells. KSHV induced pathways that are commonly altered in cancer cells including glycolysis, the pentose phosphate pathway, amino acid production and fatty acid synthesis. Interestingly, over half of the detectable long chain fatty acids detected in our screen were significantly increased by latent KSHV infection. KSHV infection leads to the elevation of metabolites involved in the synthesis of fatty acids, not degradation from phospholipids, and leads to increased lipid droplet organelle formation in the infected cells. Fatty acid synthesis is required for the survival of latently infected endothelial cells, as inhibition of key enzymes in this pathway led to apoptosis of infected cells. Addition of palmitic acid to latently infected cells treated with a fatty acid synthesis inhibitor protected the cells from death indicating that the products of this pathway are essential. Our metabolomic analysis of KSHV-infected cells provides insight as to how oncogenic viruses can induce metabolic alterations common to cancer cells. Furthermore, this analysis raises the possibility that metabolic pathways may provide novel therapeutic targets for the inhibition of latent KSHV infection and ultimately KS tumors.
A risk-associated Active transcriptome phenotype expressed by histologically normal human breast tissue and linked to a pro-tumorigenic adipocyte population
Background Previous studies have identified and validated a risk-associated Active transcriptome phenotype commonly expressed in the cancer-adjacent and histologically normal epithelium, stroma, and adipose containing peritumor microenvironment of clinically established invasive breast cancers, conferring a 2.5- to 3-fold later risk of dying from recurrent breast cancer. Expression of this Active transcriptome phenotype has not yet been evaluated in normal breast tissue samples unassociated with any benign or malignant lesions; however, it has been associated with increased peritumor adipocyte composition. Methods Detailed histologic and transcriptomic (RNAseq) analyses were performed on normal breast biopsy samples from 151 healthy, parous, non-obese (mean BMI = 29.60 ± 7.92) women, ages 27–66 who donated core breast biopsy samples to the Komen Tissue Bank, and whose average breast cancer risk estimate (Gail score) at the time of biopsy (1.27 ± 1.34) would not qualify them for endocrine prevention therapy. Results Full genome RNA sequencing (RNAseq) identified 52% (78/151) of these normal breast samples as expressing the Active breast phenotype. While Active signature genes were found to be most variably expressed in mammary adipocytes, donors with the Active phenotype had no difference in BMI but significantly higher Gail scores (1.46 vs. 1.18; p  = 0.007). Active breast samples possessed 1.6-fold more (~ 80%) adipocyte nuclei, larger cross-sectional adipocyte areas ( p  < 0.01), and 0.5-fold fewer stromal and epithelial cell nuclei ( p  < 1e−6). Infrequent low-level expression of cancer gene hotspot mutations was detected but not enriched in the Active breast samples. Active samples were enriched in gene sets associated with adipogenesis and fat metabolism (FDR q  ≤ 10%), higher signature scores for cAMP-dependent lipolysis known to drive breast cancer progression, white adipose tissue browning (Wilcoxon p  < 0.01), and genes associated with adipocyte activation (leptin, adiponectin) and remodeling (CAV1, BNIP3), adipokine growth factors (IGF-1, FGF2), and pro-inflammatory fat signaling (IKBKG, CCL13). Conclusions The risk-associated Active transcriptome phenotype first identified in cancer-adjacent breast tissues also occurs commonly in healthy women without breast disease who do not qualify for breast cancer chemoprevention, and independently of breast expressed cancer-associated mutations. The risk-associated Active phenotype appears driven by a pro-tumorigenic adipocyte microenvironment that can predate breast cancer development.
S100A8/A9 predicts response to PIM kinase and PD-1/PD-L1 inhibition in triple-negative breast cancer mouse models
Background Understanding why some triple-negative breast cancer (TNBC) patients respond poorly to existing therapies while others respond well remains a challenge. This study aims to understand the potential underlying mechanisms distinguishing early-stage TNBC tumors that respond to clinical intervention from non-responders, as well as to identify clinically viable therapeutic strategies, specifically for TNBC patients who may not benefit from existing therapies. Methods We conducted retrospective bioinformatics analysis of historical gene expression datasets to identify a group of genes whose expression levels in early-stage tumors predict poor clinical outcomes in TNBC. In vitro small-molecule screening, genetic manipulation, and drug treatment in syngeneic mouse models of TNBC were utilized to investigate potential therapeutic strategies and elucidate mechanisms of drug action. Results Our bioinformatics analysis reveals a robust association between increased expression of immunosuppressive cytokine S100A8/A9 in early-stage tumors and subsequent disease progression in TNBC. A targeted small-molecule screen identifies PIM kinase inhibitors as capable of decreasing S100A8/A9 expression in multiple cell types, including TNBC and immunosuppressive myeloid cells. Combining PIM inhibition and immune checkpoint blockade induces significant antitumor responses, especially in otherwise resistant S100A8/A9-high PD-1/PD-L1-positive tumors. Notably, serum S100A8/A9 levels mirror those of tumor S100A8/A9 in a syngeneic mouse model of TNBC. Conclusions Our data propose S100A8/A9 as a potential predictive and pharmacodynamic biomarker in clinical trials evaluating combination therapy targeting PIM and immune checkpoints in TNBC. This work encourages the development of S100A8/A9-based liquid biopsy tests for treatment guidance. Plain Language Summary Breast cancer is a complex disease, and not all patients respond well to existing treatments. In this study, we sought to understand why some patients with a specific type of breast cancer called triple-negative breast cancer respond poorly to current therapies. We also aimed to identify new treatments for these patients. We analyzed genetic data from breast cancer patients and identified a factor called S100A8/A9, which is linked to poor outcomes in early-stage cancer. We tested drugs that can reduce the levels of this factor in tumors and found promising results, especially when combined with another treatment called immunotherapy. Our findings suggest that S100A8/A9 could help predict how patients will respond to treatments, potentially leading to better therapies in the future. Begg et al. show that S100A8/9 expression is associated with risk of progression in early-stage triple-negative breast cancer cohorts. Using a small inhibitor screen, the authors identify PIM kinase inhibitors to target S100A8/A9 expression, improving antitumor response when combined with immune checkpoint blockade in mice.
In vivo Reprogramming of Cancer Metabolism by MYC
The past few decades have welcomed tremendous advancements toward understanding the functional significance of altered metabolism during tumorigenesis. However, many conclusions drawn from studies of cancer cells in a dish (i.e., ) have been put into question as multiple lines of evidence have demonstrated that the metabolism of cells can differ significantly from that of primary tumors ( . This realization, along with the need to identify tissue-specific vulnerabilities of driver oncogenes, has led to an increased focus on oncogene-dependent metabolic programming . The oncogene c-MYC (MYC) is overexpressed in a wide variety of human cancers, and while its ability to alter cellular metabolism is well-established, translating the metabolic requirements, and vulnerabilities of MYC-driven cancers to the clinic has been hindered by disparate findings from and models. This review will provide an overview of the strategies, mechanisms, and conclusions generated thus far by studying MYC's regulation of metabolism in various cancer models.
PIM1 kinase inhibition as a targeted therapy against triple-negative breast tumors with elevated MYC expression
In triple-negative breast cancer, the PIM1 kinase is highly expressed, acts to promote tumor cell survival and growth, and increases MYC transcriptional activity. Triple-negative breast cancer (TNBC), in which cells lack expression of the estrogen receptor (ER), the progesterone receptor (PR) and the ERBB2 (also known as HER2) receptor, is the breast cancer subtype with the poorest outcome 1 . No targeted therapy is available against this subtype of cancer owing to a lack of validated molecular targets. We previously reported that signaling involving MYC—an essential, pleiotropic transcription factor that regulates the expression of hundreds of genes—is disproportionally higher in triple-negative (TN) tumors than in receptor-positive (RP) tumors 2 . Direct inhibition of the oncogenic transcriptional activity of MYC has been challenging to achieve 3 . Here, by conducting a shRNA screen targeting the kinome, we identified PIM1, a non-essential serine–threonine kinase, in a synthetic lethal interaction with MYC. PIM1 expression was higher in TN tumors than in RP tumors and was associated with poor prognosis in patients with hormone- and HER2-negative tumors. Small-molecule PIM kinase inhibitors halted the growth of human TN tumors with elevated MYC expression in patient-derived tumor xenograft (PDX) and MYC-driven transgenic mouse models of breast cancer by inhibiting the oncogenic transcriptional activity of MYC and restoring the function of the endogenous cell cycle inhibitor, p27. Our findings warrant clinical evaluation of PIM kinase inhibitors in patients with TN tumors that have elevated MYC expression.
Kinome rewiring reveals AURKA limits PI3K-pathway inhibitor efficacy in breast cancer
Dysregulation of the PI3K-AKT-mTOR signaling network is a prominent feature of breast cancers. However, clinical responses to drugs targeting this pathway have been modest, possibly because of dynamic changes in cellular signaling that drive resistance and limit drug efficacy. Using a quantitative chemoproteomics approach, we mapped kinome dynamics in response to inhibitors of this pathway and identified signaling changes that correlate with drug sensitivity. Maintenance of AURKA after drug treatment was associated with resistance in breast cancer models. Incomplete inhibition of AURKA was a common source of therapy failure, and combinations of PI3K, AKT or mTOR inhibitors with the AURKA inhibitor MLN8237 were highly synergistic and durably suppressed mTOR signaling, resulting in apoptosis and tumor regression in vivo. This signaling map identifies survival factors whose presence limits the efficacy of targeted therapies and reveals new drug combinations that may unlock the full potential of PI3K–AKT–mTOR pathway inhibitors in breast cancer.
Tumor cell-adipocyte gap junctions activate lipolysis and contribute to breast tumorigenesis
A pro-tumorigenic role for adipocytes has been identified in breast cancer, and reliance on fatty acid catabolism found in aggressive tumors. The molecular mechanisms by which tumor cells coopt neighboring adipocytes, however, remain incompletely understood. Here, we describe a direct interaction linking tumorigenesis to adjacent adipocytes. We examine breast tumors and their normal adjacent tissue from several patient cohorts, patient-derived xenografts, and mouse models, and find that lipolysis and lipolytic signaling are activated in neighboring adipose tissue. We find that functional gap junctions form between breast cancer cells and adipocytes. As a result, cAMP is transferred from breast cancer cells to adipocytes and activates lipolysis in a gap junction-dependent manner. We find that connexin 31 ( GJB3 ) promotes receptor triple negative breast cancer growth and activation of lipolysis in vivo. Thus, direct tumor cell-adipocyte interaction contributes to tumorigenesis and may serve as a new therapeutic target in breast cancer. Breast cancer cells interact with neighbouring adipocytes, but the mechanisms are not fully understood. Here, the authors show that triple-negative breast cancer (TNBC) cells transfer cAMP through gap junctions, activating lipolysis in tumour-associated adipocytes to promote TNBC growth.
Metabolic Requirements Necessitate Microenvironmental Crosstalk in Breast Cancer
Despite marked advancements in targeted therapeutics, breast cancer remains the most diagnosed cancer and second leading cause of cancer-related death in women in the United States. The triple-negative subtype of breast cancer (TNBC), which lacks expression of the estrogen, progesterone and human epidermal growth factor 2 receptors, has the highest proliferative and metastatic indices, and there are no TNBC-specific therapies available in the clinic. Expression of the oncogenic transcription factor MYC is elevated in TNBC. By its nature as a transcription factor, it is challenging to drug MYC directly. An alternative strategy is a synthetic lethal approach in which pathways are identified that are essential for MYC-overexpressing tumor cells, but not normal cells. It has been shown that MYC alters metabolism during tumorigenesis, however, its role in TNBC metabolism remains largely unexplored. In addition, previous studies have largely been conducted in vitro, which may not recapitulate metabolism found in vivo. From targeted metabolomics on a transgenic mouse model of MYCoverexpressing TNBC and RNA expression analysis of primary TNBC samples from The Cancer Genome Atlas (TCGA), I identified fatty acid oxidation (FAO) as dysregulated in TNBC. Using a variety of models, I demonstrated that MYCoverexpressing TNBC has an increased bioenergetic reliance on FAO, and that inhibition of FAO abrogates tumor growth. Given the interface that exists between cancer cells and adipocytes in the breast, I examined whether tumor-adjacent adipose tissue could be a source of fatty acids that fuel tumorigenesis. Studying tumors and adjacent tissue from patient cohorts and mouse models, I found that lipolysis is hyperactivated in breast tumor-adjacent adipocytes. I investigated the tumor-adipocyte interface and found that gap junctions form between breast cancer cells and adipocytes that transfer cAMP, a lipolysis-inducing signaling molecule, from tumor cells to adipocytes. In addition, tumor-adipocyte gap junction formation requires connexin 31 (Cx31), the most upregulated connexin in the TCGA TNBC cohort, and Cx31 is essential for tumor growth and activation of lipolysis. Thus, I have identified FAO and tumor cell-adipocyte gap junctions as critical elements of TNBC tumorigenesis that may serve as new therapeutic targets to treat this aggressive subset of breast cancer.