Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
1 result(s) for "Castañeda-Rodríguez, Samanta"
Sort by:
Recent advances in modified poly (lactic acid) as tissue engineering materials
As an emerging science, tissue engineering and regenerative medicine focus on developing materials to replace, restore or improve organs or tissues and enhancing the cellular capacity to proliferate, migrate and differentiate into different cell types and specific tissues. Renewable resources have been used to develop new materials, resulting in attempts to produce various environmentally friendly biomaterials. Poly (lactic acid) (PLA) is a biopolymer known to be biodegradable and it is produced from the fermentation of carbohydrates. PLA can be combined with other polymers to produce new biomaterials with suitable physicochemical properties for tissue engineering applications. Here, the advances in modified PLA as tissue engineering materials are discussed in light of its drawbacks, such as biological inertness, low cell adhesion, and low degradation rate, and the efforts conducted to address these challenges toward the design of new enhanced alternative biomaterials.