Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
106
result(s) for
"Castaldi, Peter J."
Sort by:
External validation of new risk prediction models is infrequent and reveals worse prognostic discrimination
by
Siontis, George C.M.
,
Tzoulaki, Ioanna
,
Ioannidis, John P.A.
in
Area Under Curve
,
Area under the receiver operating characteristics curve
,
Biomarkers
2015
To evaluate how often newly developed risk prediction models undergo external validation and how well they perform in such validations.
We reviewed derivation studies of newly proposed risk models and their subsequent external validations. Study characteristics, outcome(s), and models' discriminatory performance [area under the curve, (AUC)] in derivation and validation studies were extracted. We estimated the probability of having a validation, change in discriminatory performance with more stringent external validation by overlapping or different authors compared to the derivation estimates.
We evaluated 127 new prediction models. Of those, for 32 models (25%), at least an external validation study was identified; in 22 models (17%), the validation had been done by entirely different authors. The probability of having an external validation by different authors within 5 years was 16%. AUC estimates significantly decreased during external validation vs. the derivation study [median AUC change: −0.05 (P < 0.001) overall; −0.04 (P = 0.009) for validation by overlapping authors; −0.05 (P < 0.001) for validation by different authors]. On external validation, AUC decreased by at least 0.03 in 19 models and never increased by at least 0.03 (P < 0.001).
External independent validation of predictive models in different studies is uncommon. Predictive performance may worsen substantially on external validation.
Journal Article
Enhanced protein isoform characterization through long-read proteogenomics
by
Sheynkman, Gloria M.
,
Mehlferber, Madison M.
,
Millikin, Robert J.
in
algorithms
,
Alternative Splicing
,
Animal Genetics and Genomics
2022
Background
The detection of physiologically relevant protein isoforms encoded by the human genome is critical to biomedicine. Mass spectrometry (MS)-based proteomics is the preeminent method for protein detection, but isoform-resolved proteomic analysis relies on accurate reference databases that match the sample; neither a subset nor a superset database is ideal. Long-read RNA sequencing (e.g., PacBio or Oxford Nanopore) provides full-length transcripts which can be used to predict full-length protein isoforms.
Results
We describe here a long-read proteogenomics approach for integrating sample-matched long-read RNA-seq and MS-based proteomics data to enhance isoform characterization. We introduce a classification scheme for protein isoforms, discover novel protein isoforms, and present the first protein inference algorithm for the direct incorporation of long-read transcriptome data to enable detection of protein isoforms previously intractable to MS-based detection. We have released an open-source Nextflow pipeline that integrates long-read sequencing in a proteomic workflow for isoform-resolved analysis.
Conclusions
Our work suggests that the incorporation of long-read sequencing and proteomic data can facilitate improved characterization of human protein isoform diversity. Our first-generation pipeline provides a strong foundation for future development of long-read proteogenomics and its adoption for both basic and translational research.
Journal Article
Omics and the Search for Blood Biomarkers in Chronic Obstructive Pulmonary Disease. Insights from COPDGene
by
Silverman, Edwin K.
,
DeMeo, Dawn L.
,
Crapo, James D.
in
Adiponectin - blood
,
Advanced glycosylation end products
,
Animals
2019
There is an unmet need for blood biomarkers in diagnosis and prognosis of chronic obstructive pulmonary disease (COPD). The search for these biomarkers has been revolutionized by high-throughput sequencing techniques and multiplex platforms that can measure thousands of gene transcripts, proteins, or metabolites. We review COPDGene (Genetic Epidemiology of COPD) project publications that include DNA methylation, transcriptomic, proteomic, and metabolomic blood biomarkers and discuss their impact on COPD. Key contributions from COPDGene include identification of DNA methylation effects from smoking and genetic variation, new transcriptomic signatures in the blood, identification of protein biomarkers associated with severity and progression (e.g., sRAGE [soluble receptor for advanced glycosylation end products], inflammatory cytokines IL-6 and IL-8), and identification of small molecules (ceramides and sphingomyelin) that may be pathogenic. COPDGene studies have revealed that some of the COPD genome-wide association study polymorphisms are strongly associated with blood biomarkers (e.g., rs2070600 in
is a pQTL [protein quantitative trait locus] for sRAGE), underscoring the importance of combining omics results. Investigators have developed molecular networks identifying lower CD4
resting memory cells associated with COPD. Genes, proteins, and metabolite networks are particularly important because the explanatory value of any single molecule is small (1-10%) compared with panels of multiple markers. COPDGene has been a useful resource in the identification and validation of multiple biomarkers for COPD. These biomarkers, either combined in multiple biomarker panels or integrated with other omics data types, may lead to novel diagnostic and prognostic tests for COPD phenotypes and may be relevant for assessing novel therapies.
Journal Article
Bipartite Community Structure of eQTLs
by
Platig, John
,
Quackenbush, John
,
Castaldi, Peter J.
in
Algorithms
,
Biology and Life Sciences
,
Chronic obstructive lung disease
2016
Genome Wide Association Studies (GWAS) and expression quantitative trait locus (eQTL) analyses have identified genetic associations with a wide range of human phenotypes. However, many of these variants have weak effects and understanding their combined effect remains a challenge. One hypothesis is that multiple SNPs interact in complex networks to influence functional processes that ultimately lead to complex phenotypes, including disease states. Here we present CONDOR, a method that represents both cis- and trans-acting SNPs and the genes with which they are associated as a bipartite graph and then uses the modular structure of that graph to place SNPs into a functional context. In applying CONDOR to eQTLs in chronic obstructive pulmonary disease (COPD), we found the global network \"hub\" SNPs were devoid of disease associations through GWAS. However, the network was organized into 52 communities of SNPs and genes, many of which were enriched for genes in specific functional classes. We identified local hubs within each community (\"core SNPs\") and these were enriched for GWAS SNPs for COPD and many other diseases. These results speak to our intuition: rather than single SNPs influencing single genes, we see groups of SNPs associated with the expression of families of functionally related genes and that disease SNPs are associated with the perturbation of those functions. These methods are not limited in their application to COPD and can be used in the analysis of a wide variety of disease processes and other phenotypic traits.
Journal Article
A generalized higher-order correlation analysis framework for multi-omics network inference
by
Liu, Weixuan
,
Hersh, Craig
,
Pratte, Katherine A.
in
Access control
,
Algorithms
,
Biological analysis
2025
Multiple -omics (genomics, proteomics, etc.) profiles are commonly generated to gain insight into a disease or physiological system. Constructing multi-omics networks with respect to the trait(s) of interest provides an opportunity to understand relationships between molecular features but integration is challenging due to multiple data sets with high dimensionality. One approach is to use canonical correlation to integrate one or two omics types and a single trait of interest. However, these types of methods may be limited due to (1) not accounting for higher-order correlations existing among features, (2) computational inefficiency when extending to more than two omics data when using a penalty term-based sparsity method, and (3) lack of flexibility for focusing on specific correlations (e.g., omics-to-phenotype correlation versus omics-to-omics correlations). In this work, we have developed a novel multi-omics network analysis pipeline called Sparse Generalized Tensor Canonical Correlation Analysis Network Inference (SGTCCA-Net) that can effectively overcome these limitations. We also introduce an implementation to improve the summarization of networks for downstream analyses. Simulation and real-data experiments demonstrate the effectiveness of our novel method for inferring omics networks and features of interest.
Journal Article
Genetic Advances in Chronic Obstructive Pulmonary Disease. Insights from COPDGene
by
Silverman, Edwin K.
,
Bowler, Russell P.
,
Hersh, Craig P.
in
Aged
,
Aged, 80 and over
,
Bioinformatics
2019
Chronic obstructive pulmonary disease (COPD) is a common and progressive disease that is influenced by both genetic and environmental factors. For many years, knowledge of the genetic basis of COPD was limited to Mendelian syndromes, such as alpha-1 antitrypsin deficiency and cutis laxa, caused by rare genetic variants. Over the past decade, the proliferation of genome-wide association studies, the accessibility of whole-genome sequencing, and the development of novel methods for analyzing genetic variation data have led to a substantial increase in the understanding of genetic variants that play a role in COPD susceptibility and COPD-related phenotypes. COPDGene (Genetic Epidemiology of COPD), a multicenter, longitudinal study of over 10,000 current and former cigarette smokers, has been pivotal to these breakthroughs in understanding the genetic basis of COPD. To date, over 20 genetic loci have been convincingly associated with COPD affection status, with additional loci demonstrating association with COPD-related phenotypes such as emphysema, chronic bronchitis, and hypoxemia. In this review, we discuss the contributions of the COPDGene study to the discovery of these genetic associations as well as the ongoing genetic investigations of COPD subtypes, protein biomarkers, and post-genome-wide association study analysis.
Journal Article
Multi-omics subtyping pipeline for chronic obstructive pulmonary disease
by
Stene, Evan
,
Schuyler, Ronald P.
,
Zhuang, Yonghua
in
Age Factors
,
Aged
,
Biology and Life Sciences
2021
Chronic Obstructive Pulmonary Disease (COPD) is the third leading cause of mortality in the United States; however, COPD has heterogeneous clinical phenotypes. This is the first large scale attempt which uses transcriptomics, proteomics, and metabolomics (multi-omics) to determine whether there are molecularly defined clusters with distinct clinical phenotypes that may underlie the clinical heterogeneity. Subjects included 3,278 subjects from the COPDGene cohort with at least one of the following profiles: whole blood transcriptomes (2,650 subjects); plasma proteomes (1,013 subjects); and plasma metabolomes (1,136 subjects). 489 subjects had all three contemporaneous -omics profiles. Autoencoder embeddings were performed individually for each -omics dataset. Embeddings underwent subspace clustering using MineClus, either individually by -omics or combined, followed by recursive feature selection based on Support Vector Machines. Clusters were tested for associations with clinical variables. Optimal single -omics clustering typically resulted in two clusters. Although there was overlap for individual -omics cluster membership, each -omics cluster tended to be defined by unique molecular pathways. For example, prominent molecular features of the metabolome-based clustering included sphingomyelin, while key molecular features of the transcriptome-based clusters were related to immune and bacterial responses. We also found that when we integrated the -omics data at a later stage, we identified subtypes that varied based on age, severity of disease, in addition to diffusing capacity of the lungs for carbon monoxide, and precent on atrial fibrillation. In contrast, when we integrated the -omics data at an earlier stage by treating all data sets equally, there were no clinical differences between subtypes. Similar to clinical clustering, which has revealed multiple heterogenous clinical phenotypes, we show that transcriptomics, proteomics, and metabolomics tend to define clusters of COPD patients with different clinical characteristics. Thus, integrating these different -omics data sets affords additional insight into the molecular nature of COPD and its heterogeneity.
Journal Article
Heritability of Chronic Obstructive Pulmonary Disease and Related Phenotypes in Smokers
by
Hersh, Craig P.
,
Laird, Nan M.
,
Zhou, Jin J.
in
Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy
,
Biological and medical sciences
,
Chromosomes
2013
Previous studies of chronic obstructive pulmonary disease (COPD) have suggested that genetic factors play an important role in the development of disease. However, single-nucleotide polymorphisms that are associated with COPD in genome-wide association studies have been shown to account for only a small percentage of the genetic variance in phenotypes of COPD, such as spirometry and imaging variables. These phenotypes are highly predictive of disease, and family studies have shown that spirometric phenotypes are heritable.
To assess the heritability and coheritability of four major COPD-related phenotypes (measurements of FEV1, FEV1/FVC, percent emphysema, and percent gas trapping), and COPD affection status in smokers of non-Hispanic white and African American descent using a population design.
Single-nucleotide polymorphisms from genome-wide association studies chips were used to calculate the relatedness of pairs of individuals and a mixed model was adopted to estimate genetic variance and covariance.
In the non-Hispanic whites, estimated heritabilities of FEV1 and FEV1/FVC were both about 37%, consistent with estimates in the literature from family-based studies. For chest computed tomography scan phenotypes, estimated heritabilities were both close to 25%. Heritability of COPD affection status was estimated as 37.7% in both populations.
This study suggests that a large portion of the genetic risk of COPD is yet to be discovered and gives rationale for additional genetic studies of COPD. The estimates of coheritability (genetic covariance) for pairs of the phenotypes suggest considerable overlap of causal genetic loci.
Journal Article
A Genome-Wide Association Study of Emphysema and Airway Quantitative Imaging Phenotypes
by
Silverman, Edwin K.
,
San José Estépar, Raúl
,
Tal-Singer, Ruth
in
Aged
,
Carrier Proteins - genetics
,
Cohort Studies
2015
Chronic obstructive pulmonary disease (COPD) is defined by the presence of airflow limitation on spirometry, yet subjects with COPD can have marked differences in computed tomography imaging. These differences may be driven by genetic factors. We hypothesized that a genome-wide association study (GWAS) of quantitative imaging would identify loci not previously identified in analyses of COPD or spirometry. In addition, we sought to determine whether previously described genome-wide significant COPD and spirometric loci were associated with emphysema or airway phenotypes.
To identify genetic determinants of quantitative imaging phenotypes.
We performed a GWAS on two quantitative emphysema and two quantitative airway imaging phenotypes in the COPDGene (non-Hispanic white and African American), ECLIPSE (Evaluation of COPD Longitudinally to Identify Predictive Surrogate Endpoints), NETT (National Emphysema Treatment Trial), and GenKOLS (Genetics of COPD, Norway) studies and on percentage gas trapping in COPDGene. We also examined specific loci reported as genome-wide significant for spirometric phenotypes related to airflow limitation or COPD.
The total sample size across all cohorts was 12,031, of whom 9,338 were from COPDGene. We identified five loci associated with emphysema-related phenotypes, one with airway-related phenotypes, and two with gas trapping. These loci included previously reported associations, including the HHIP, 15q25, and AGER loci, as well as novel associations near SERPINA10 and DLC1. All previously reported COPD and a significant number of spirometric GWAS loci were at least nominally (P < 0.05) associated with either emphysema or airway phenotypes.
Genome-wide analysis may identify novel risk factors for quantitative imaging characteristics in COPD and also identify imaging features associated with previously identified lung function loci.
Journal Article
The value of blood cytokines and chemokines in assessing COPD
2017
Background
Blood biomarkers are increasingly used to stratify high risk chronic obstructive pulmonary disease (COPD) patients; however, there are fewer studies that have investigated multiple biomarkers and replicated in multiple large well-characterized cohorts of susceptible current and former smokers.
Methods
We used two MSD multiplex panels to measure 9 cytokines and chemokines in 2123 subjects from COPDGene and 1117 subjects from SPIROMICS. These biomarkers included: interleukin (IL)-2, IL-6, IL-8, IL-10, tumor necrosis factor (TNF)-α, interferon (IFN)-γ, eotaxin/CCL-11, eotaxin-3/CCL-26, and thymus and activation-regulated chemokine (TARC)/CCL-17. Regression models adjusted for clinical covariates were used to determine which biomarkers were associated with the following COPD phenotypes: airflow obstruction (forced expiratory flow at 1 s (FEV
1
%) and FEV
1
/forced vital capacity (FEV
1
/FVC), chronic bronchitis, COPD exacerbations, and emphysema. Biomarker-genotype associations were assessed by genome-wide association of single nucleotide polymorphisms (SNPs).
Results
Eotaxin and IL-6 were strongly associated with airflow obstruction and accounted for 3–5% of the measurement variance on top of clinical variables. IL-6 was associated with progressive airflow obstruction over 5 years and both IL-6 and IL-8 were associated with progressive emphysema over 5 years. None of the biomarkers were consistently associated with chronic bronchitis or COPD exacerbations. We identified one novel SNP (rs9302690 SNP) that was associated with CCL17 plasma measurements.
Conclusion
When assessing smoking related pulmonary disease, biomarkers of inflammation such as IL-2, IL-6, IL-8, and eotaxin may add additional modest predictive value on top of clinical variables alone.
Trial registration
COPDGene (ClinicalTrials.gov Identifier:
NCT02445183
).
Subpopulations and Intermediate Outcomes Measures in COPD Study (SPIROMICS) (
ClinicalTrials.gov
Identifier:
NCT 01969344
).
Journal Article