Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
      More Filters
      Clear All
      More Filters
      Source
    • Language
441 result(s) for "Castro Neto, A. H."
Sort by:
Controlling many-body states by the electric-field effect in a two-dimensional material
To be able to control the properties of a system that has strong electron–electron interactions using only an external electric field would be ideal, but the material must be thin enough to avoid shielding of the electric field in the bulk material; here pure electric-field control of the charge-density wave and superconductivity transition temperatures is achieved by electrolyte gating through an electric-field double layer transistor in the two-dimensional material 1T-TiSe 2 . Electronic behavior in 1T-TiSe 2 The properties of a system with strong electron–electron interactions are ideally studied using only an external electric field, but this is only effective if the material is thin enough to avoid the shielding effect of the bulk material. Various fabrication techniques have been developed in recent years to produce ultrathin, two-dimensional forms of electronic materials. Antonoi Castro-Neto and colleagues use one such method to study the layered transition-metal dichalcogenide 1T-TiSe 2 in the form of a flake less than 10 nanometres thick and encapsulated between hexagonal boron nitride. By varying the electric field, magnetic field and temperature, they reveal details about the transition between different electronic phases, such as a correlation between the existence of superconductivity and appearance of spatially modulated electronic states. To understand the complex physics of a system with strong electron–electron interactions, the ideal is to control and monitor its properties while tuning an external electric field applied to the system (the electric-field effect). Indeed, complete electric-field control of many-body states in strongly correlated electron systems is fundamental to the next generation of condensed matter research and devices 1 , 2 , 3 . However, the material must be thin enough to avoid shielding of the electric field in the bulk material. Two-dimensional materials do not experience electrical screening, and their charge-carrier density can be controlled by gating. Octahedral titanium diselenide (1T-TiSe 2 ) is a prototypical two-dimensional material that reveals a charge-density wave (CDW) and superconductivity in its phase diagram 4 , presenting several similarities with other layered systems such as copper oxides 5 , iron pnictides 6 , and crystals of rare-earth elements and actinide atoms 7 . By studying 1T-TiSe 2 single crystals with thicknesses of 10 nanometres or less, encapsulated in two-dimensional layers of hexagonal boron nitride, we achieve unprecedented control over the CDW transition temperature (tuned from 170 kelvin to 40 kelvin), and over the superconductivity transition temperature (tuned from a quantum critical point at 0 kelvin up to 3 kelvin). Electrically driving TiSe 2 over different ordered electronic phases allows us to study the details of the phase transitions between many-body states. Observations of periodic oscillations of magnetoresistance induced by the Little–Parks effect show that the appearance of superconductivity is directly correlated with the spatial texturing of the amplitude and phase of the superconductivity order parameter, corresponding to a two-dimensional matrix of superconductivity. We infer that this superconductivity matrix is supported by a matrix of incommensurate CDW states embedded in the commensurate CDW states. Our results show that spatially modulated electronic states are fundamental to the appearance of two-dimensional superconductivity.
2D materials and van der Waals heterostructures
The physics of two-dimensional (2D) materials and heterostructures based on such crystals has been developing extremely fast. With these new materials, truly 2D physics has begun to appear (for instance, the absence of long-range order, 2D excitons, commensurate-incommensurate transition, etc.). Novel heterostructure devices—such as tunneling transistors, resonant tunneling diodes, and light-emitting diodes—are also starting to emerge. Composed from individual 2D crystals, such devices use the properties of those materials to create functionalities that are not accessible in other heterostructures. Here we review the properties of novel 2D crystals and examine how their properties are used in new heterostructure devices.
Two-dimensional multibit optoelectronic memory with broadband spectrum distinction
Optoelectronic memory plays a vital role in modern semiconductor industry. The fast emerging requirements for device miniaturization and structural flexibility have diverted research interest to two-dimensional thin layered materials. Here, we report a multibit nonvolatile optoelectronic memory based on a heterostructure of monolayer tungsten diselenide and few-layer hexagonal boron nitride. The tungsten diselenide/boron nitride memory exhibits a memory switching ratio approximately 1.1 × 10 6 , which ensures over 128 (7 bit) distinct storage states. The memory demonstrates robustness with retention time over 4.5 × 10 4  s. Moreover, the ability of broadband spectrum distinction enables its application in filter-free color image sensor. This concept is further validated through the realization of integrated tungsten diselenide/boron nitride pixel matrix which captured a specific image recording the three primary colors (red, green, and blue). The heterostructure architecture is also applicable to other two-dimensional materials, which is confirmed by the realization of black phosphorus/boron nitride optoelectronic memory. Continued device miniaturization and feasibility of integrating two-dimensional materials into circuits have enabled flexible and transparent optoelectronic memories. Here, the authors show a WSe 2 –hBN-based heterostructure memory with switching ratio of ~1.1 × 10 6 , ensuring over 128 distinct storage states and retention time of ~4.5 × 10 4  s.
Ultrafast optical switching of infrared plasmon polaritons in high-mobility graphene
Non-equilibrium photoinduced plasmons in a high-mobility graphene monolayer are investigated at infrared wavelengths. The success of metal-based plasmonics for manipulating light at the nanoscale has been empowered by imaginative designs and advanced nano-fabrication. However, the fundamental optical and electronic properties of elemental metals, the prevailing plasmonic media, are difficult to alter using external stimuli. This limitation is particularly restrictive in applications that require modification of the plasmonic response at sub-picosecond timescales. This handicap has prompted the search for alternative plasmonic media 1 , 2 , 3 , with graphene emerging as one of the most capable candidates for infrared wavelengths. Here we visualize and elucidate the properties of non-equilibrium photo-induced plasmons in a high-mobility graphene monolayer 4 . We activate plasmons with femtosecond optical pulses in a specimen of graphene that otherwise lacks infrared plasmonic response at equilibrium. In combination with static nano-imaging results on plasmon propagation, our infrared pump–probe nano-spectroscopy investigation reveals new aspects of carrier relaxation in heterostructures based on high-purity graphene.
Strain-Induced Pseudo-Magnetic Fields Greater Than 300 Tesla in Graphene Nanobubbles
Recent theoretical proposals suggest that strain can be used to engineer graphene electronic states through the creation of a pseudo-magnetic field. This effect is unique to graphene because of its massless Dirac fermion-like band structure and particular lattice symmetry (C₃v). Here, we present experimental spectroscopic measurements by scanning tunneling microscopy of highly strained nanobubbles that form when graphene is grown on a platinum (111) surface. The nanobubbles exhibit Landau levels that form in the presence of strain-induced pseudo-magnetic fields greater than 300 tesla. This demonstration of enormous pseudo-magnetic fields opens the door to both the study of charge carriers in previously inaccessible high magnetic field regimes and deliberate mechanical control over electronic structure in graphene or so-called \"strain engineering.\"
Tailoring sample-wide pseudo-magnetic fields on a graphene–black phosphorus heterostructure
Spatially tailored pseudo-magnetic fields (PMFs) can give rise to pseudo-Landau levels and the valley Hall effect in graphene. At an experimental level, it is highly challenging to create the specific strain texture that can generate PMFs over large areas. Here, we report that superposing graphene on multilayer black phosphorus creates shear-strained superlattices that generate a PMF over an entire graphene–black phosphorus heterostructure with edge size of tens of micrometres. The PMF is intertwined with the spatial period of the moiré pattern, and its spatial distribution and intensity can be modified by changing the relative orientation of the two materials. We show that the emerging pseudo-Landau levels influence the transport properties of graphene–black phosphorus field-effect transistor devices with Hall bar geometry. The application of an external magnetic field allows us to enhance or reduce the effective field depending on the valley polarization with the prospect of developing a valley filter.
Strong Light-Matter Interactions in Heterostructures of Atomically Thin Films
The isolation of various two-dimensional (2D) materials, and the possibility to combine them in vertical stacks, has created a new paradigm in materials science: heterostructures based on 2D crystals. Such a concept has already proven fruitful for a number of electronic applications in the area of ultrathin and flexible devices. Here, we expand the range of such structures to photoactive ones by using semiconducting transition metal dichalcogenides (TMDCs)/graphene stacks. Van Hove singularities in the electronic density of states of TMDC guarantees enhanced light-matter interactions, leading to enhanced photon absorption and electron-hole creation (which are collected in transparent graphene electrodes). This allows development of extremely efficient flexible photovoltaic devices with photoresponsivity above 0.1 ampere per watt (corresponding to an external quantum efficiency of above 30%).
Tunable Phonon Polaritons in Atomically Thin van der Waals Crystals of Boron Nitride
Engineered heterostructures consisting of thin, weakly bound layers can exhibit many attractive electronic properties. Dai et al. (p. 1125 ) used infrared nanoimaging on the surface of hexagonal boron nitride crystals to detect phonon polaritons, collective modes that originate in the coupling of photons to optical phonons. The findings reveal the dependence of the polariton wavelength and dispersion on the thickness of the material down to just a few atomic layers. Infrared nanoimaging is used to detect a type of surface collective mode in a representative van der Waals crystal. van der Waals heterostructures assembled from atomically thin crystalline layers of diverse two-dimensional solids are emerging as a new paradigm in the physics of materials. We used infrared nanoimaging to study the properties of surface phonon polaritons in a representative van der Waals crystal, hexagonal boron nitride. We launched, detected, and imaged the polaritonic waves in real space and altered their wavelength by varying the number of crystal layers in our specimens. The measured dispersion of polaritonic waves was shown to be governed by the crystal thickness according to a scaling law that persists down to a few atomic layers. Our results are likely to hold true in other polar van der Waals crystals and may lead to new functionalities.
Surface transfer doping induced effective modulation on ambipolar characteristics of few-layer black phosphorus
Black phosphorus, a fast emerging two-dimensional material, has been configured as field effect transistors, showing a hole-transport-dominated ambipolar characteristic. Here we report an effective modulation on ambipolar characteristics of few-layer black phosphorus transistors through in situ surface functionalization with caesium carbonate (Cs 2 CO 3 ) and molybdenum trioxide (MoO 3 ), respectively. Cs 2 CO 3 is found to strongly electron dope black phosphorus. The electron mobility of black phosphorus is significantly enhanced to ~27 cm 2  V −1  s −1 after 10 nm Cs 2 CO 3 modification, indicating a greatly improved electron-transport behaviour. In contrast, MoO 3 decoration demonstrates a giant hole-doping effect. In situ photoelectron spectroscopy characterization reveals significant surface charge transfer occurring at the dopants/black phosphorus interfaces. Moreover, the surface-doped black phosphorus devices exhibit a largely enhanced photodetection behaviour. Our findings coupled with the tunable nature of the surface transfer doping scheme ensure black phosphorus as a promising candidate for further complementary logic electronics. Black phosphorus is a graphene-like material that can be harnessed for two-dimensional electronic devices. Here, Xiang et al . demonstrate that adding caesium carbonate or molybdenum trioxide can significantly enhance the electron or hole conduction, respectively, of this promising material.
Gate-tuning of graphene plasmons revealed by infrared nano-imaging
Plasmons are directly launched in graphene, and their key parameters — propagation and attenuation — are studied with near-field infrared nano-imaging. Voltage-controlled graphene plasmonics Plasmonic devices, which exploit surface plasmons (electromagnetic waves that propagate along the surface of metals) offer the possibility of controlling and guiding light at subwavelength scales. All eyes are on graphene — atom-thick layers of carbon — as a promising platform for plasmonic applications because it can strongly interact with light and host surface plasmons in the infrared range. Two independent groups reporting in this issue of Nature show that plasmons can be directly launched in graphene, and observed with near-field optical microscopy. Moreover, the wavelengths and amplitudes of the plasmons can be tuned by a gate voltage, a promising capability for the development of on-chip graphene photonics for use in applications including telecommunications and information processing. Surface plasmons are collective oscillations of electrons in metals or semiconductors that enable confinement and control of electromagnetic energy at subwavelength scales 1 , 2 , 3 , 4 , 5 . Rapid progress in plasmonics has largely relied on advances in device nano-fabrication 5 , 6 , 7 , whereas less attention has been paid to the tunable properties of plasmonic media. One such medium—graphene—is amenable to convenient tuning of its electronic and optical properties by varying the applied voltage 8 , 9 , 10 , 11 . Here, using infrared nano-imaging, we show that common graphene/SiO 2 /Si back-gated structures support propagating surface plasmons. The wavelength of graphene plasmons is of the order of 200 nanometres at technologically relevant infrared frequencies, and they can propagate several times this distance. We have succeeded in altering both the amplitude and the wavelength of these plasmons by varying the gate voltage. Using plasmon interferometry, we investigated losses in graphene by exploring real-space profiles of plasmon standing waves formed between the tip of our nano-probe and the edges of the samples. Plasmon dissipation quantified through this analysis is linked to the exotic electrodynamics of graphene 10 . Standard plasmonic figures of merit of our tunable graphene devices surpass those of common metal-based structures.