Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
98 result(s) for "Chen, Guokai"
Sort by:
Passaging and colony expansion of human pluripotent stem cells by enzyme-free dissociation in chemically defined culture conditions
This protocol describes an EDTA-based passaging procedure to be used with chemically defined E8 medium that serves as a tool for basic and translational research into human pluripotent stem cells (PSCs). In this protocol, passaging one six-well or 10-cm plate of cells takes about 6–7 min. This enzyme-free protocol achieves maximum cell survival without enzyme neutralization, centrifugation or drug treatment. It also allows for higher throughput, requires minimal material and limits contamination. Here we describe how to produce a consistent E8 medium for routine maintenance and reprogramming and how to incorporate the EDTA-based passaging procedure into human induced PSC (iPSC) derivation, colony expansion, cryopreservation and teratoma formation. This protocol has been successful in routine cell expansion, and efficient for expanding large-volume cultures or a large number of cells with preferential dissociation of PSCs. Effective for all culture stages, this procedure provides a consistent and universal approach to passaging human PSCs in E8 medium.
Integrating spatial and single-cell transcriptomics reveals tumor heterogeneity and intercellular networks in colorectal cancer
Single cell RNA sequencing (scRNA-seq), a powerful tool for studying the tumor microenvironment (TME), does not preserve/provide spatial information on tissue morphology and cellular interactions. To understand the crosstalk between diverse cellular components in proximity in the TME, we performed scRNA-seq coupled with spatial transcriptomic (ST) assay to profile 41,700 cells from three colorectal cancer (CRC) tumor-normal-blood pairs. Standalone scRNA-seq analyses revealed eight major cell populations, including B cells, T cells, Monocytes, NK cells, Epithelial cells, Fibroblasts, Mast cells, Endothelial cells. After the identification of malignant cells from epithelial cells, we observed seven subtypes of malignant cells that reflect heterogeneous status in tumor, including tumor_CAV1, tumor_ATF3_JUN | FOS, tumor_ZEB2, tumor_VIM, tumor_WSB1, tumor_LXN, and tumor_PGM1. By transferring the cellular annotations obtained by scRNA-seq to ST spots, we annotated four regions in a cryosection from CRC patients, including tumor, stroma, immune infiltration, and colon epithelium regions. Furthermore, we observed intensive intercellular interactions between stroma and tumor regions which were extremely proximal in the cryosection. In particular, one pair of ligands and receptors (C5AR1 and RPS19) was inferred to play key roles in the crosstalk of stroma and tumor regions. For the tumor region, a typical feature of TMSB4X -high expression was identified, which could be a potential marker of CRC. The stroma region was found to be characterized by VIM -high expression, suggesting it fostered a stromal niche in the TME. Collectively, single cell and spatial analysis in our study reveal the tumor heterogeneity and molecular interactions in CRC TME, which provides insights into the mechanisms underlying CRC progression and may contribute to the development of anticancer therapies targeting on non-tumor components, such as the extracellular matrix (ECM) in CRC. The typical genes we identified may facilitate to new molecular subtypes of CRC.
Immune-like Phagocyte Activity in the Social Amoeba
Social amoebae feed on bacteria in the soil but aggregate when starved to form a migrating slug. We describe a previously unknown cell type in the social amoeba, which appears to provide detoxification and immune-like functions and which we term sentinel (S) cells. S cells were observed to engulf bacteria and sequester toxins while circulating within the slug, eventually being sloughed off. A Toll/interleukin-1 receptor (TIR) domain protein, TirA, was also required for some S cell functions and for vegetative amoebae to feed on live bacteria. This apparent innate immune function in social amoebae, and the use of TirA for bacterial feeding, suggest an ancient cellular foraging mechanism that may have been adapted to defense functions well before the diversification of the animals.
Targeting B7-H3 via chimeric antigen receptor T cells and bispecific killer cell engagers augments antitumor response of cytotoxic lymphocytes
Background B7-H3, an immune-checkpoint molecule and a transmembrane protein, is overexpressed in non-small cell lung cancer (NSCLC), making it an attractive therapeutic target. Here, we aimed to systematically evaluate the value of B7-H3 as a target in NSCLC via T cells expressing B7-H3-specific chimeric antigen receptors (CARs) and bispecific killer cell engager (BiKE)-redirected natural killer (NK) cells. Methods We generated B7-H3 CAR and B7-H3/CD16 BiKE derived from an anti-B7-H3 antibody omburtamab that has been shown to preferentially bind tumor tissues and has been safely used in humans in early-phase clinical trials. Antitumor efficacy and induced-immune response of CAR and BiKE were evaluated in vitro and in vivo. The effects of B7-H3 on aerobic glycolysis in NSCLC cells were further investigated. Results B7-H3 CAR-T cells effectively inhibited NSCLC tumorigenesis in vitro and in vivo. B7-H3 redirection promoted highly specific T-cell infiltration into tumors. Additionally, NK cell activity could be specially triggered by B7-H3/CD16 BiKE through direct CD16 signaling, resulting in significant increase in NK cell activation and target cell death. BiKE improved antitumor efficacy mediated by NK cells in vitro and in vivo, regardless of the cell surface target antigen density on tumor tissues. Furthermore, we found that anti-B7-H3 blockade might alter tumor glucose metabolism via the reactive oxygen species-mediated pathway. Conclusions Together, our results suggest that B7-H3 may serve as a target for NSCLC therapy and support the further development of two therapeutic agents in the preclinical and clinical studies.
A cost-effective and efficient reprogramming platform for large-scale production of integration-free human induced pluripotent stem cells in chemically defined culture
Factors limiting the adoption of iPSC technology include the cost of developing lines and the time period that it takes to characterize and bank them, particularly when integration free, feeder free and Xeno-free components are used. In this manuscript we describe our optimization procedure that enables a single technician to make 20–40 lines at a time in a 24–96 well format in a reliable and reproducible fashion. Improvements spanned the entire workflow and included using RNA virus, reducing cytotoxicity of reagents, developing improved transfection and freezing efficiencies, modifying the manual colony picking steps, enhancing passaging efficiency and developing early criteria of success. These modifications allowed us to make more than two hundred well-characterized lines per year.
Review immune response of targeting CD39 in cancer
The ATP-adenosine pathway has emerged as a promising target for cancer therapy, but challenges remain in achieving effective tumor control. Early research focused on blocking the adenosine generating enzyme CD73 and the adenosine receptors A2AR or A2BR in cancer. However, recent studies have shown that targeting CD39, the rate-limiting ecto-enzyme of the ATP-adenosine pathway, can provide more profound anti-tumor efficacy by reducing immune-suppressive adenosine accumulation and increasing pro-inflammatory ATP levels. In addition, combining CD39 blocking antibody with PD-1 immune checkpoint therapy may have synergistic anti-tumor effects and improve patient survival. This review will discuss the immune components that respond to CD39 targeting in the tumor microenvironment. Targeting CD39 in cancer has been shown to not only decrease adenosine levels in the tumor microenvironment (TME), but also increase ATP levels. Additionally, targeting CD39 can limit the function of Treg cells, which are known to express high levels of CD39. With phase I clinical trials of CD39 targeting currently underway, further understanding and rational design of this approach for cancer therapy are expected.
Editorial: Studying rare diseases using induced pluripotent stem cell (iPSC)-based model systems
To facilitate relevant scientific developments, it is critical that human cells, especially cell types affected in specific rare diseases, be obtained on a large scale for scientific work. [...]Parvatam et al. discussed complex in vitro models (CIVM), including iPSCs, organoids, and organs-on-chip models, as powerful tools for developing effective therapies with a higher clinical translation chance (Parvatam et al.). Developing methods for the precise induction of cellular complexes and functional tissues would enable more accurate disease modeling. [...]although not covered in this Research Topic, iPSC-based cell replacement therapies could be a viable option for the treatment of specific cellular phenotypes in rare diseases, considering the potential of iPSC-based cell therapies in regenerative medicine (Takahashi, 2025).
Tumor‐associated macrophages‐educated reparative macrophages promote diabetic wound healing
Nonhealing diabetic wounds, with persistent inflammation and damaged vasculature, have failed conventional treatments and require comprehensive interference. Here, inspired by tumor‐associated macrophages (TAMs) that produce abundant immunosuppressive and proliferative factors in tumor development, we generate macrophages to recapitulate TAMs' reparative functions, by culturing normal macrophages with TAMs' conditional medium (TAMs‐CM). These TAMs‐educated macrophages (TAMEMs) outperform major macrophage phenotypes (M0, M1, or M2) in suppressing inflammation, stimulating angiogenesis, and activating fibroblasts in vitro . When delivered to skin wounds in diabetic mice, TAMEMs efficiently promote healing. Based on TAMs‐CM's composition, we further reconstitute a nine‐factor cocktail to train human primary monocytes into TAMEMs C‐h , which fully resemble TAMEMs' functions without using tumor components, thereby having increased safety and enabling the preparation of autologous cells. Our study demonstrates that recapitulating TAMs' unique reparative activities in nontumor cells can lead to an effective cell therapeutic approach with high translational potential for regenerative medicine. Synopsis Mouse and human macrophages trained by tumor‐associated macrophages (TAMs) or a cytokine cocktail exhibit improved reparative functions than conventional macrophage subtypes. Transplantation of these TAMs‐educated macrophages (TAMEMs) promotes diabetic wound healing in mice. TAMEMs and TAMs show similar expression patterns for genes regulating inflammatory resolution and tissue regeneration. TAMEMs promoted skin wound healing in both T1D and T2D mouse models, rebuilding organized vasculature comparable to that in unwounded mouse skin. A human recombinant protein cocktail—comprising osteopontin, IL‐31, IL‐10, and six other factors—recapitulated the action of TAMEMs to train human macrophages with reparative activities. Graphical Abstract Mouse and human macrophages trained by tumor‐associated macrophages (TAMs) or a cytokine cocktail exhibit improved reparative functions than conventional macrophage subtypes. Transplantation of these TAMs‐educated macrophages (TAMEMs) promotes diabetic wound healing in mice.
Nicotinamide promotes pancreatic differentiation through the dual inhibition of CK1 and ROCK kinases in human embryonic stem cells
Background Vitamin B3 (nicotinamide) plays important roles in metabolism as well as in SIRT and PARP pathways. It is also recently reported as a novel kinase inhibitor with multiple targets. Nicotinamide promotes pancreatic cell differentiation from human embryonic stem cells (hESCs). However, its molecular mechanism is still unclear. In order to understand the molecular mechanism involved in pancreatic cell fate determination, we analyzed the downstream pathways of nicotinamide in the derivation of NKX6.1 + pancreatic progenitors from hESCs. Methods We applied downstream modulators of nicotinamide during the induction from posterior foregut to pancreatic progenitors, including niacin, PARP inhibitor, SIRT inhibitor, CK1 inhibitor and ROCK inhibitor. The impact of those treatments was evaluated by quantitative real-time PCR, flow cytometry and immunostaining of pancreatic markers. Furthermore, CK1 isoforms were knocked down to validate CK1 function in the induction of pancreatic progenitors. Finally, RNA-seq was used to demonstrate pancreatic induction on the transcriptomic level. Results First, we demonstrated that nicotinamide promoted pancreatic progenitor differentiation in chemically defined conditions, but it did not act through either niacin-associated metabolism or the inhibition of PARP and SIRT pathways. In contrast, nicotinamide modulated differentiation through CK1 and ROCK inhibition. We demonstrated that CK1 inhibitors promoted the generation of PDX1/NKX6.1 double-positive pancreatic progenitor cells. shRNA knockdown revealed that the inhibition of CK1α and CK1ε promoted pancreatic progenitor differentiation. We then showed that nicotinamide also improved pancreatic progenitor differentiation through ROCK inhibition. Finally, RNA-seq data showed that CK1 and ROCK inhibition led to pancreatic gene expression, similar to nicotinamide treatment. Conclusions In this report, we revealed that nicotinamide promotes generation of pancreatic progenitors from hESCs through CK1 and ROCK inhibition. Furthermore, we discovered the novel role of CK1 in pancreatic cell fate determination.
Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin‐Free Medium, Enabling Consistent Manufacture of Cardiomyocytes
Cardiomyocytes can be differentiated from human pluripotent stem cells (hPSCs) in defined conditions, but efficient and consistent cardiomyocyte differentiation often requires expensive reagents such as B27 supplement or recombinant albumin. Using a chemically defined albumin‐free (E8 basal) medium, we identified heparin as a novel factor that significantly promotes cardiomyocyte differentiation efficiency, and developed an efficient method to differentiate hPSCs into cardiomyocytes. The treatment with heparin helped cardiomyocyte differentiation consistently reach at least 80% purity (up to 95%) from more than 10 different hPSC lines in chemically defined Dulbecco's modified Eagle's medium/F‐12‐based medium on either Matrigel or defined matrices like vitronectin and Synthemax. One of heparin's main functions was to act as a Wnt modulator that helped promote robust and consistent cardiomyocyte production. Our study provides an efficient, reliable, and cost‐effective method for cardiomyocyte derivation from hPSCs that can be used for potential large‐scale drug screening, disease modeling, and future cellular therapies. Stem Cells Translational Medicine 2017;6:527–538