Search Results Heading

MBRLSearchResults

mbrl.module.common.modules.added.book.to.shelf
Title added to your shelf!
View what I already have on My Shelf.
Oops! Something went wrong.
Oops! Something went wrong.
While trying to add the title to your shelf something went wrong :( Kindly try again later!
Are you sure you want to remove the book from the shelf?
Oops! Something went wrong.
Oops! Something went wrong.
While trying to remove the title from your shelf something went wrong :( Kindly try again later!
    Done
    Filters
    Reset
  • Discipline
      Discipline
      Clear All
      Discipline
  • Is Peer Reviewed
      Is Peer Reviewed
      Clear All
      Is Peer Reviewed
  • Item Type
      Item Type
      Clear All
      Item Type
  • Subject
      Subject
      Clear All
      Subject
  • Year
      Year
      Clear All
      From:
      -
      To:
  • More Filters
29 result(s) for "Chertemps, Thomas"
Sort by:
Resistance in the Genus Spodoptera: Key Insect Detoxification Genes
The genus Spodoptera (Lepidoptera: Noctuidae) includes species that are among the most important crop pests in the world. These polyphagous species are able to feed on many plants, including corn, rice and cotton. In addition to their ability to adapt to toxic compounds produced by plants, they have developed resistance to the chemical insecticides used for their control. One of the main mechanisms developed by insects to become resistant involves detoxification enzymes. In this review, we illustrate some examples of the role of major families of detoxification enzymes such as cytochromes P450, carboxyl/cholinesterases, glutathione S-transferases (GST) and transporters such as ATP-binding cassette (ABC) transporters in insecticide resistance. We compare available data for four species, Spodoptera exigua, S. frugiperda, S. littoralis and S. litura. Molecular mechanisms underlying the involvement of these genes in resistance will be described, including the duplication of the CYP9A cluster, over-expression of GST epsilon or point mutations in acetylcholinesterase and ABCC2. This review is not intended to be exhaustive but to highlight the key roles of certain genes.
Neuroanatomy of a hydrothermal vent shrimp provides insights into the evolution of crustacean integrative brain centers
Alvinocaridid shrimps are emblematic representatives of the deep hydrothermal vent fauna at the Mid-Atlantic Ridge. They are adapted to a mostly aphotic habitat with extreme physicochemical conditions in the vicinity of the hydrothermal fluid emissions. Here, we investigated the brain architecture of the vent shrimp Rimicaris exoculata to understand possible adaptations of its nervous system to the hydrothermal sensory landscape. Its brain is modified from the crustacean brain ground pattern by featuring relatively small visual and olfactory neuropils that contrast with well-developed higher integrative centers, the hemiellipsoid bodies. We propose that these structures in vent shrimps may fulfill functions in addition to higher order sensory processing and suggest a role in place memory. Our study promotes vent shrimps as fascinating models to gain insights into sensory adaptations to peculiar environmental conditions, and the evolutionary transformation of specific brain areas in Crustacea. Oceanic vents are areas where hot gases and liquids emerge from cracks and chimneys on the seafloor. These fluids can be as hot as 350°C and are rich in potentially toxic chemicals. Nevertheless, they are the key energy source of many animals that make the vents their home. Vents can be found thousands of meters under sea level, where no sunlight penetrates, so the animals living there must use senses other than vision. As an example, the vent shrimp Rimicaris exoculata, which is used as a vent model animal, was thought to orient itself by sensing chemicals in the vents through their sense of smell. Machon et al. investigate whether vent shrimps possess particular abilities to detect the chemical landscape of the hydrothermal environment, and describe the brain structure and associated sensory systems of R. exoculata. Since the brain in these shrimps is subdivided into regions devoted to different functions, if one of their senses were used more than the others the region devoted to this sense should be bigger or structurally different. When the anatomy of the brain centers in R. exoculata was compared to that of its shallow-water relatives, there was no suggestion that the vent shrimps had an advanced ability to sense chemicals. Rather, a striking feature of the brain of the vent shrimps is the volume and structure of their higher brain centers, which integrate all of their sensory information. It is possible that these regions are also involved in other brain functions as well, since they take up an especially high proportion of the brain. Machon et al. found similarities between R. exoculata and other crustaceans that have sophisticated navigation skills so they hypothesize that integrative brain centers in vent shrimps could play a role in place memory. The findings provide new insights for biologists studying animals associated with deep hydrothermal vents and are also important for neuroscientists interested in brain function and evolution. Future studies should focus on senses of the vent shrimp other than smell to ultimately understand the lifestyle and long-term survival of vent animals.
A carboxylesterase, Esterase-6, modulates sensory physiological and behavioral response dynamics to pheromone in Drosophila
Background Insects respond to the spatial and temporal dynamics of a pheromone plume, which implies not only a strong response to 'odor on', but also to 'odor off'. This requires mechanisms geared toward a fast signal termination. Several mechanisms may contribute to signal termination, among which odorant-degrading enzymes. These enzymes putatively play a role in signal dynamics by a rapid inactivation of odorants in the vicinity of the sensory receptors, although direct in vivo experimental evidences are lacking. Here we verified the role of an extracellular carboxylesterase, esterase-6 (Est-6), in the sensory physiological and behavioral dynamics of Drosophila melanogaster response to its pheromone, cis -vaccenyl acetate (cVA). Est-6 was previously linked to post-mating effects in the reproductive system of females. As Est-6 is also known to hydrolyze cVA in vitro and is expressed in the main olfactory organ, the antenna, we tested here its role in olfaction as a putative odorant-degrading enzyme. Results We first confirm that Est-6 is highly expressed in olfactory sensilla, including cVA-sensitive sensilla, and we show that expression is likely associated with non-neuronal cells. Our electrophysiological approaches show that the dynamics of olfactory receptor neuron (ORN) responses is strongly influenced by Est-6, as in Est-6° null mutants (lacking the Est-6 gene) cVA-sensitive ORN showed increased firing rate and prolonged activity in response to cVA. Est-6° mutant males had a lower threshold of behavioral response to cVA, as revealed by the analysis of two cVA-induced behaviors. In particular, mutant males exhibited a strong decrease of male-male courtship, in association with a delay in courtship initiation. Conclusions Our study presents evidence that Est-6 plays a role in the physiological and behavioral dynamics of sex pheromone response in Drosophila males and supports a role of Est-6 as an odorant-degrading enzyme (ODE) in male antennae. Our results also expand the role of Est-6 in Drosophila biology, from reproduction to olfaction, and highlight the role of ODEs in insect olfaction.
Degradation of Pheromone and Plant Volatile Components by a Same Odorant-Degrading Enzyme in the Cotton Leafworm, Spodoptera littoralis
Odorant-Degrading Enzymes (ODEs) are supposed to be involved in the signal inactivation step within the olfactory sensilla of insects by quickly removing odorant molecules from the vicinity of the olfactory receptors. Only three ODEs have been both identified at the molecular level and functionally characterized: two were specialized in the degradation of pheromone compounds and the last one was shown to degrade a plant odorant. Previous work has shown that the antennae of the cotton leafworm Spodoptera littoralis, a worldwide pest of agricultural crops, express numerous candidate ODEs. We focused on an esterase overexpressed in males antennae, namely SlCXE7. We studied its expression patterns and tested its catalytic properties towards three odorants, i.e. the two female sex pheromone components and a green leaf volatile emitted by host plants. SlCXE7 expression was concomitant during development with male responsiveness to odorants and during adult scotophase with the period of male most active sexual behaviour. Furthermore, SlCXE7 transcription could be induced by male exposure to the main pheromone component, suggesting a role of Pheromone-Degrading Enzyme. Interestingly, recombinant SlCXE7 was able to efficiently hydrolyze the pheromone compounds but also the plant volatile, with a higher affinity for the pheromone than for the plant compound. In male antennae, SlCXE7 expression was associated with both long and short sensilla, tuned to sex pheromones or plant odours, respectively. Our results thus suggested that a same ODE could have a dual function depending of it sensillar localisation. Within the pheromone-sensitive sensilla, SlCXE7 may play a role in pheromone signal termination and in reduction of odorant background noise, whereas it could be involved in plant odorant inactivation within the short sensilla.
female-biased expressed elongase involved in long-chain hydrocarbon biosynthesis and courtship behavior in Drosophila melanogaster
Drosophila melanogaster produces sexually dimorphic cuticular pheromones that are a key component of the courtship behavior leading to copulation. These molecules are hydrocarbons, with lengths of 23 and 25 carbons in males (mainly with one double bond) and 27 and 29 carbons in females (mainly with two double bonds). Here, we describe an elongase gene, eloF, with female-biased expression. The 771-bp ORF encodes a 257-aa protein that shows the highest sequence identity with mouse SSC1 elongase (33%). The activity of the cDNA expressed in yeast was elongation of saturated and unsaturated fatty acids up to C30. RNAi knockdown in Drosophila led to a dramatic modification of female hydrocarbons, with decreased C29 dienes and increased C25 dienes accompanied by a modification of several courtship parameters: an increase in copulation latency and a decrease in both copulation attempts and copulation. Feminization of the hydrocarbon profile in males by using targeted expression of the transformer gene resulted in high expression levels of eloF, suggesting that the gene is under the control of the sex-determination hierarchy. There is no expression of eloF in Drosophila simulans, which synthesize only C23 and C25 hydrocarbons. These results strongly support the hypothesis that eloF is a crucial enzyme for female pheromone biosynthesis and courtship behavior in D. melanogaster.
Transcuticular calcium imaging as a tool for the functional study of insect odorant receptors
The primary actors in the detection of olfactory information in insects are odorant receptors (ORs), transmembrane proteins expressed at the dendrites of olfactory sensory neurons (OSNs). In order to decode the insect olfactome, many studies focus on the deorphanization of ORs (i.e., identification of their ligand), using various approaches involving heterologous expression coupled to neurophysiological recordings. The “empty neuron system” of the fruit fly Drosophila melanogaster is an appreciable host for insect ORs, because it conserves the cellular environment of an OSN. Neural activity is usually recorded using labor-intensive electrophysiological approaches (single sensillum recordings, SSR). In this study, we establish a simple method for OR deorphanization using transcuticular calcium imaging (TCI) at the level of the fly antenna. As a proof of concept, we used two previously deorphanized ORs from the cotton leafworm Spodoptera littoralis , a specialist pheromone receptor and a generalist plant odor receptor. We demonstrate that by co-expressing the GCaMP6s/m calcium probes with the OR of interest, it is possible to measure robust odorant-induced responses under conventional microscopy conditions. The tuning breadth and sensitivity of ORs as revealed using TCI were similar to those measured using single sensillum recordings (SSR). We test and discuss the practical advantages of this method in terms of recording duration and the simultaneous testing of several insects.
Characterization of an antennal carboxylesterase from the pest moth Spodoptera littoralis degrading a host plant odorant
Background: Carboxyl/cholinesterases (CCEs) are highly diversified in insects. These enzymes have a broad range of proposed functions, in neuro/developmental processes, dietary detoxification, insecticide resistance or hormone/ pheromone degradation. As few functional data are available on purified or recombinant CCEs, the physiological role of most of these enzymes is unknown. Concerning their role in olfaction, only two CCEs able to metabolize sex pheromones have been functionally characterized in insects. These enzymes are only expressed in the male antennae, and secreted into the lumen of the pheromone-sensitive sensilla. CCEs able to hydrolyze other odorants than sex pheromones, such as plant volatiles, have not been identified. Methodology: In Spodoptera littoralis, a major crop pest, a diversity of antennal CCEs has been previously identified. We have employed here a combination of molecular biology, biochemistry and electrophysiology approaches to functionally characterize an intracellular CCE, SlCXE10, whose predominant expression in the olfactory sensilla suggested a role in olfaction. A recombinant protein was produced using the baculovirus system and we tested its catabolic properties towards a plant volatile and the sex pheromone components. Conclusion: We showed that SlCXE10 could efficiently hydrolyze a green leaf volatile and to a lesser extent the sex pheromone components. The transcript level in male antennae was also strongly induced by exposure to this plant odorant. In antennae, SlCXE10 expression was associated with sensilla responding to the sex pheromones and to plant odours. These results suggest that a CCE-based intracellular metabolism of odorants could occur in insect antennae, in addition to the extracellular metabolism occurring within the sensillar lumen. This is the first functional characterization of an Odorant- Degrading Enzyme active towards a host plant volatile.
Expression Patterns of Drosophila Melanogaster Glutathione Transferases
Glutathione transferases (GSTs) are ubiquitous enzymes that catalyze the conjugation of glutathione to various molecules. Among the 42 GSTs identified in Drosophila melanogaster, Delta and Epsilon are the largest classes, with 25 members. The Delta and Epsilon classes are involved in different functions, such as insecticide resistance and ecdysone biosynthesis. The insect GST number variability is due mainly to these classes. Thus, they are generally considered supports during the evolution for the adaptability of the insect species. To explore the link between Delta and Epsilon GST and their evolution, we analyzed the sequences using bioinformatic tools. Subgroups appear within the Delta and Epsilon GSTs with different levels of diversification. The diversification also appears in the sequences showing differences in the active site. Additionally, amino acids essential for structural stability or dimerization appear conserved in all GSTs. Quantitative real-time polymerase chain reaction (qRT-PCR) analysis revealed that the transcripts corresponding to these two classes are heterogeneously expressed within D. melanogaster. Some GSTs, such as GSTD1, are highly expressed in all tissues, suggesting their general function in detoxification. Conversely, some others, such as GSTD11 or GSTE4, are specifically expressed at a high level specifically in antennae, suggesting a potential role in olfaction.
Unexpected effects of sublethal doses of insecticide on the peripheral olfactory response and sexual behavior in a pest insect
Pesticides have long been used as the main solution to limit agricultural pests, but their widespread use resulted in chronic or diffuse environmental pollutions, development of insect resistances, and biodiversity reduction. The effects of low residual doses of these chemical products on organisms that affect both targeted species (crop pests) but also beneficial insects became a major concern, particularly because low doses of pesticides can induce unexpected positive-also called hormetic-effects on insects, leading to surges in pest population growth at greater rate than what would have been observed without pesticide application. The present study aimed to examine the effects of sublethal doses of deltamethrin, one of the most used synthetic pyrethroids, known to present a residual activity and persistence in the environment, on the peripheral olfactory system and sexual behavior of a major pest insect, the cotton leafworm Spodoptera littoralis. We highlighted here a hormetic effect of sublethal dose of deltamethrin on the male responses to sex pheromone, without any modification of their response to host-plant odorants. We also identified several antennal actors potentially involved in this hormetic effect and in the antennal detoxification or antennal stress response of/to deltamethrin exposure
The effect of developmental temperature on olfaction in a moth revealed by its interaction with body mass
There is a growing interest in the effects of climate warming on olfaction, as temperature may affect this essential sense. In insects, the response of the olfactory system to developmental temperature might be mediated by body size or mass because body size and mass are negatively affected by developmental temperature in most ectotherms. We tested this hypothesis of a mass-mediated effect of developmental temperature on olfaction in the moth Spodoptera littoralis . We measured the olfactory sensitivity of male to female sex pheromone and five plant odors using electroantennography. We compared males reared at an optimal temperature (25 °C with a daily fluctuation of ±5 °C) and at a high temperature (33 ± 5 °C) close to the upper limit of S. littoralis . On average, the olfactory sensitivity of males did not differ between the two developmental temperatures. However, our analyses revealed an interaction between the effects of developmental temperature and body mass on the detection of the six chemicals tested. This interaction is explained by a positive relationship between antennal sensitivity and body mass observed only with the high developmental temperature. Our results show that the effect of developmental temperature may not be detected when organism size is ignored. An interaction between the effects of developmental temperature and body mass on olfaction in a moth is explained by a positive relationship between antennal sensitivity and body mass observed only with a high temperature.