Catalogue Search | MBRL
Search Results Heading
Explore the vast range of titles available.
MBRLSearchResults
-
DisciplineDiscipline
-
Is Peer ReviewedIs Peer Reviewed
-
Item TypeItem Type
-
SubjectSubject
-
YearFrom:-To:
-
More FiltersMore FiltersSourceLanguage
Done
Filters
Reset
32
result(s) for
"Cheung, Hiu Wing"
Sort by:
Highly parallel identification of essential genes in cancer cells
by
Nguyen, Tuyen
,
Hinkle, Greg
,
Awad, Tarif
in
Abl protein
,
Antineoplastic Agents - pharmacokinetics
,
BCR protein
2008
More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.
Journal Article
Systematic investigation of genetic vulnerabilities across cancer cell lines reveals lineage-specific dependencies in ovarian cancer
by
Mermel, Craig H
,
Ren, Yin
,
Jiang, Guozhi
in
Alcohol Oxidoreductases
,
animal ovaries
,
Apoptosis
2011
A comprehensive understanding of the molecular vulnerabilities of every type of cancer will provide a powerful roadmap to guide therapeutic approaches. Efforts such as The Cancer Genome Atlas Project will identify genes with aberrant copy number, sequence, or expression in various cancer types, providing a survey of the genes that may have a causal role in cancer. A complementary approach is to perform systematic loss-of-function studies to identify essential genes in particular cancer cell types. We have begun a systematic effort, termed Project Achilles, aimed at identifying genetic vulnerabilities across large numbers of cancer cell lines. Here, we report the assessment of the essentiality of 11,194 genes in 102 human cancer cell lines. We show that the integration of these functional data with information derived from surveying cancer genomes pinpoints known and previously undescribed lineage-specific dependencies across a wide spectrum of cancers. In particular, we found 54 genes that are specifically essential for the proliferation and viability of ovarian cancer cells and also amplified in primary tumors or differentially overexpressed in ovarian cancer cell lines. One such gene, PAX8, is focally amplified in 16% of high-grade serous ovarian cancers and expressed at higher levels in ovarian tumors. Suppression of PAX8 selectively induces apoptotic cell death of ovarian cancer cells. These results identify PAX8 as an ovarian lineage-specific dependency. More generally, these observations demonstrate that the integration of genome-scale functional and structural studies provides an efficient path to identify dependencies of specific cancer types on particular genes and pathways.
Journal Article
Multiplex detection of seven transgenes for human gene doping analysis
by
Naumann, Nana
,
Wong, Kin-Sing
,
Ho, Emmie N. M.
in
631/1647/1513/2216
,
631/1647/2196/2197
,
631/1647/296
2025
Gene doping is known as the manipulation of congenital traits by gene therapeutic approaches with the intent of illicit athletic performance enhancement. A panel prototype suitable for multiplex gene doping detection by combining multiplex Polymerase Chain Reaction (PCR)-amplification with Matrix-Assisted Laser Desorption/Ionization-Time of Flight Mass Spectrometry (MALDI-TOF MS) analysis was developed and examined for its specificity and sensitivity, and its applicability in human sports drug testing programs was assessed. The panel comprises 20 assays for exon-exon-junction detection of seven human transgenes (
EPO, FST, GH1, IGF1, MSTN
(propeptide),
VEGFA, VEGFD
), which have been considered as material to routine doping controls, in one reaction. Alongside, a suitable reference material (RM) was designed and tested for its utility. An estimated LOD
95
of 1,500 cp / mL or 30 copies (cp) per reaction of the panel and 500 cp / mL or 10 cp per reaction of the RM was determined in plasmid-spiked human whole blood samples. The specificity and applicability of the panel and the RM was further determined by testing equine plasma samples obtained from an animal that received rAAV-delivered human transgenic
EPO
as well as 111 native human doping control samples.
Journal Article
Identification of a novel function of TWIST, a bHLH protein, in the development of acquired taxol resistance in human cancer cells
by
Ling, Ming Tat
,
Cheung, Hiu Wing
,
Lee, Davy Tak
in
Apoptosis
,
Biological and medical sciences
,
Bladder
2004
Taxol is one of the widely used chemotherapeutic drugs against many types of human cancer. While it is considered as one of the most effective anticancer drugs, treatment failure often occurs due to development of acquired resistance. Therefore, it is important to understand the molecular mechanisms responsible for the development of drug resistance. Although it is generally believed that taxol induces cell death through interfering with microtubules leading to mitotic arrest, recent evidence has suggested that taxol-induced cell death also occurs through pathways independent of either microtubule or mitotic arrest. In this study, we report the identification of a novel role for TWIST, a basic helix–loop–helix protein, which plays a central role in cell type determination and differentiation, during generation of acquired resistance to taxol in a nasopharyngeal carcinoma cell line, HNE1-T3, using comparative genome hybridization (CGH) and subsequent RT–PCR and Western blotting. We found that upregulation of TWIST was associated with cellular resistance to taxol but not other drugs with different mechanisms of action. The fact that increased TWIST protein levels were also associated with another microtubule-targeting anticancer drug, vincristine, in four types of human cancer including nasopharyngeal, bladder, ovarian and prostate, indicates that it may play a central role in the resistance to microtubule-disrupting agents. In addition, ectopic expression of TWIST into human cancer cells also led to increased resistance to both taxol and vincristine. Our results indicate a novel mechanism that leads to resistance to microtubule-disrupting anticancer drugs through upregulation of TWIST. Our evidence provides a therapeutic strategy to overcome acquired resistance through inactivation of TWIST expression in human cancer.
Journal Article
In vivo multiplexed interrogation of amplified genes identifies GAB2 as an ovarian cancer oncogene
by
Liu, Joyce F.
,
Berlin, Aaron M.
,
Weir, Barbara A.
in
Adaptor Proteins, Signal Transducing - genetics
,
Adaptor Proteins, Signal Transducing - metabolism
,
animal ovaries
2014
High-grade serous ovarian cancers are characterized by widespread recurrent copy number alterations. Although some regions of copy number change harbor known oncogenes and tumor suppressor genes, the genes targeted by the majority of amplified or deleted regions in ovarian cancer remain undefined. Here we systematically tested amplified genes for their ability to promote tumor formation using an in vivo multiplexed transformation assay. We identified the GRB2-associated binding protein 2 (GAB2) as a recurrently amplified gene that potently transforms immortalized ovarian and fallopian tube secretory epithelial cells. Cancer cell lines overexpressing GAB2 require GAB2 for survival and show evidence of phosphatidylinositol 3-kinase (PI3K) pathway activation, which was required for GAB2-induced transformation. Cell lines overexpressing GAB2 were as sensitive to PI3K inhibition as cell lines harboring mutant PIK3CA . Together, these observations nominate GAB2 as an ovarian cancer oncogene, identify an alternative mechanism to activate PI3K signaling, and underscore the importance of PI3K signaling in this cancer.
Journal Article
Highly parallel identification of essential genes in cancer cells
2008
More complete knowledge of the molecular mechanisms underlying cancer will improve prevention, diagnosis and treatment. Efforts such as The Cancer Genome Atlas are systematically characterizing the structural basis of cancer, by identifying the genomic mutations associated with each cancer type. A powerful complementary approach is to systematically characterize the functional basis of cancer, by identifying the genes essential for growth and related phenotypes in different cancer cells. Such information would be particularly valuable for identifying potential drug targets. Here, we report the development of an efficient, robust approach to perform genome-scale pooled shRNA screens for both positive and negative selection and its application to systematically identify cell essential genes in 12 cancer cell lines. By integrating these functional data with comprehensive genetic analyses of primary human tumors, we identified known and putative oncogenes such as EGFR, KRAS, MYC, BCR-ABL, MYB, CRKL, and CDK4 that are essential for cancer cell proliferation and also altered in human cancers. We further used this approach to identify genes involved in the response of cancer cells to tumoricidal agents and found 4 genes required for the response of CML cells to imatinib treatment: PTPN1, NF1, SMARCB1, and SMARCE1, and 5 regulators of the response to FAS activation, FAS, FADD, CASP8, ARID1A and CBX1. Broad application of this highly parallel genetic screening strategy will not only facilitate the rapid identification of genes that drive the malignant state and its response to therapeutics but will also enable the discovery of genes that participate in any biological process.
Journal Article
Gene doping control analysis of human erythropoietin transgene in equine plasma by PCR-liquid chromatography high resolution tandem mass spectrometry
2024
Gene doping involves the misuse of gene materials to alter athlete’s performance which is banned at all times in both human and equine sports. Quantitative polymerase chain reaction (qPCR) assays have been used to control the misuse of transgenes in equine sports. Our laboratory recently developed and implemented duplex as well as multiplex qPCR assays for transgenes detection. As our continuous efforts in advancing gene doping control, in this work we have developed for the first time a sensitive and definitive PCR-liquid chromatography high resolution tandem mass spectrometry (PCR-LC-HRMS/MS) method for transgene detection, thus achieving an estimated limit of detection below 100 copies/mL for human erythropoietin (hEPO) transgene in equine plasma. The method involved magnetic-glass-particle-based extraction of DNA from equine plasma prior to PCR amplification with 2'-deoxyuridine 5'-triphosphate (dUTP), followed by treatments with uracil DNA glycosylase and hot piperidine for selective cleavage to give small oligonucleotide fragments. The resulting DNA fragments were then analysed by LC-HRMS/MS. The applicability of this method has been demonstrated by successful detection of hEPO transgene in blood samples collected from a gelding that had been administered with hEPO. This novel approach not only serves as an orthogonal method for transgene detection, but also paves the way to development of generic PCR-LC-HRMS/MS method for detection of multiple transgenes.
Prognostic factors related to ambulation deterioration after 1-year of geriatric hip fracture in a Chinese population
by
Cheung, Wing-Hoi
,
Chow, Simon Kwoon-Ho
,
Chau, Wai Wang
in
692/699/578
,
692/700/806
,
Age Factors
2021
The objective of this study was to investigate the prognostic factors predicting the ambulation recovery of fragility hip fracture patients. 2286 fragility hip fracture patients were collected from the Fragility Fracture Registry in Hong Kong. Predictive factors of ambulation deterioration including age, gender, pre-operation American Society of Anesthesiologists grade, pre-fracture mobility, delay to surgery, length of stay, fracture type, type of surgery, discharge destination and complications were identified. Patients with outdoor unassisted and outdoor with aids ambulatory function before fracture had 3- and 1.5-times increased risk of mobility deterioration, respectively (Odds Ratio (OR) = 2.556 and 1.480, 95% Confidence Interval (CI) 2.101–3.111 and 1.246–1.757, both p < 0.001). Patients living in old age homes had almost 1.4 times increased risk of deterioration when compared to those that lived in their homes (OR = 1.363, 95% CI 1.147–1.619, p < 0.001). The risk also increased for every 10 years of age (OR = 1.831, 95% CI 1.607–2.086, p < 0.001). Patients in the higher risk ASA group shows a decreased risk of ambulation deterioration compared to those in lower risk ASA group (OR = 0.831, 95% CI 0.698–0.988, p = 0.038). Patients who suffered from complications after surgery did not increased risk of mobility decline at 1-year post-surgery. Delayed surgery over 48 h, delayed discharge (> 14 days), early discharge (less than 6 days), and length of stay also did not increased risk of mobility decline. Male patients performed worse in terms of their mobility function after surgery compared to female patients (OR = 1.195, 95% CI 1.070–1.335, p = 0.002). This study identified that better premorbid good function, discharge to old age homes especially newly institutionalized patients, increased age, lower ASA score, and male patients, correlate with mobility deterioration at 1-year post-surgery. With the aging population and development of FLS, prompt identification of at-risk patients should be performed for prevention of deterioration.
Journal Article
The imminent risk of a fracture—existing worldwide data: a systematic review and meta-analysis
2022
SummaryThe overall incidence of imminent fracture after a prior fragility fracture was 7.58% in the first year and 11.58% in the first 2 years. Approximately half of re-fractures occurred in the first 2 years after a fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly, with immediate care and a secondary fracture prevention to prevent the high imminent risk of a fracture.IntroductionImminent fractures refer to the fractures that occur within 2 years of an initial fracture. It is well known that the risk of a subsequent fracture is not constant with time and occurs shortly after the initial one. This systematic review and meta-analysis aimed to present the existing data on imminent fracture worldwide.MethodsLiterature search was conducted in Pubmed, Embase, and Web of Science databases until 26 October 2021 for studies reporting the incidence of imminent osteoporotic fractures among people aged 50 years or older. The overall incidence of imminent fracture was pooled and subgroup analyses of index fracture sites and regions on incidence of imminent fracture were performed, with the 95% confidence interval (CI) being calculated. Percentage of imminent fracture occurring in follow-up period was calculated and pooled by meta-analysis. Hazard ratio (HR) was used to estimate the gender differences on the imminent risk of fracture.ResultsA total of 1446 articles were identified. Nineteen observational studies were eligible for our systematic review, in which 18 were used for quantitative analysis. Pooled overall incidence of imminent fracture in the first year after an osteoporotic fracture was 7.58% (95% CI 5.84 to 9.31%) and cumulative incidence in the first 2 years was 11.58% (95% CI 8.94 to 14.21%). Subgroup analysis showed that in the first 2 years, the pooled incidence in Asia was 7.30% (95% CI 3.42 to 11.18%), whilst incidence in Europe/North America was 13.17% (95% CI 10.14 to 16.20%). In included studies with follow-up period of more than 5 years, pooled imminent fracture percentage in the first 2 years was 47.24% (95% CI 26.18 to 68.30%). Hazard ratio (HR) on gender showed that women had an overall slight increase in risk of imminent fractures (HR 1.18, 95% CI 1.11 to 1.25).ConclusionThe incidence of imminent fracture is high globally at 11.58%. Approximately half of all refractures occur in the first 2 years after an index fragility fracture. Older patients that have suffered from a fragility fracture should be treated promptly. Also, immediate care and secondary fracture prevention are necessary to prevent the high imminent risk of a fracture, especially within the first 2 years.
Journal Article